

Environmental Consultants

Prepared for All Roads Construction Ltd.

Coquitlam, B.C.

EMISSION MONITORING REPORT

August 2024 COMPLIANCE SURVEY Permit: GVA1145 Prepared by: L. Agassiz Issued on: August 13, 2024

CERTIFICATION

The field monitoring for this survey was conducted by certified stack test technicians as required by the British Columbia Ministry of Environment (BC MOE) Field Sampling Manual.

The field crew consisted of:

Mr. L. Forrer (certified), Mr. J. Gibbs (certified), and Mr. C. De La O (certified).

The report was prepared by Mr. L. Agassiz (certified) using reporting principles and guidelines generally acceptable to B.C. MOE and Metro Vancouver (MV).

The field crew and A. Lanfranco and Associates Inc. certify that the test methods used were MOE/MV approved reference methods for the parameters investigated.

Report reviewed on Aug 13, 2024, by:

Carter Lanfranco

Carter Lanfranco, CST Chief Operating Officer | Owner

TABLE OF CONTENTS

SUMMARY	1
1 TEST PROGRAM ORGANIZATION and INTRODUCTION	2
2 PROCESS DESCRIPTION	3
3 METHODOLOGY	3
3.1 Sampling Techniques	3
3.2 Analytical Techniques	8
4 RESULTS	8
5 DISCUSSION OF RESULTS	11

APPENDICES

Appendix 1 – CEM Minutely Averages and Computer Outputs of Measured and Calculated Data

- Appendix 2 Calculations
- **Appendix 3** Analytical Data
- Appendix 4 Field Data Sheets
- **Appendix 5** Calibration Data and Certifications

SUMMARY

The following table presents the average emission results for the listed parameters. The emission survey was conducted at the All Roads Construction hot mix asphalt plant in Coquitlam, B.C. on August 1, 2024.

PARAMETER	RESULT	PERMITTED LEVEL
Particulate (mg/Sm ³ @ 16% O ₂)	1.45	30
Carbon Monoxide (mg/Sm ³ @ 16% O ₂)	65.2	200
Total Hydrocarbons (mg/Sm ³ @ 16% O ₂)	11.9	40
Flowrate (Sm ³ /min)	512	870
Temperature (°C)	118	

All results are at standard conditions of 20 °C and 101.325 kPa (dry)

There are no permit exceedances, and the results are like previous testing. The differences year to year are in a normal range of outcomes for this process.

1 TEST PROGRAM ORGANIZATION and INTRODUCTION

Mr. Dennis Eby
Plant Manager
All Roads Construction Ltd.
D.Eby@allroadsconstruction.com
Mr. Mark Lanfranco
President Owner
A. Lanfranco and Associates Inc.
(604) 881-2582
mark.lanfranco@alanfranco.com
Mr. L. Forrer – A. Lanfranco and Associates Inc. Mr. J. Gibbs – A. Lanfranco and Associates Inc. Mr. C. De La O – A. Lanfranco and Associates Inc.

In August 2024, All Roads commissioned A. Lanfranco and Associates Inc. of Surrey, B.C. to conduct an emission survey on the baghouse stack at their Coquitlam asphalt plant.

The purpose of the survey was to measure and report various emission parameters from the asphalt manufacturing process. The testing was conducted to determine compliance with permitted particulate matter, carbon monoxide, and organics discharges at 16% O₂. The emission limits are stipulated in All Roads Permit GVA1145.

This report documents the methods used and results found for the triplicate one-hour emission tests that were conducted on August 1, 2024.

2 PROCESS DESCRIPTION

The All Roads hot mix asphalt plant, located at 2320 Rogers Avenue in Coquitlam, B.C. is a rotary drum mix asphalt plant. The unit is a natural gas fired Gencor Ultra II drum burner.

Dust laden flue gases generated in the mixer and dryer are cleaned by a Gencor CFS151 Baghouse. Following the fabric filtration, cleaned flue gases are discharged to atmosphere through a 1.37-meter stack which is monitored by a Dwyer real time particulate monitoring system. An ID fan is employed in the system.

On August 1, 2024, the plant maintained an average production rate of about 200 tonnes/hr during the monitoring.

3 METHODOLOGY

The sampling and analytical methods used throughout this survey conform to the procedures outlined in the B.C. "Source Testing Code" 2020 Edition and the B.C. air analytical manual.

3.1 <u>Sampling Techniques</u>

Samples from the main stack were collected from two ports located at 90 degrees to each other. Particulate samples were taken with an APEX sample train (Fig. 1) equipped with a heated five-foot stainless-steel probe and heated filter assembly. The sample ports were about 3.5 diameters downstream and 1.0 diameters upstream of the nearest disturbances. From these criteria a 24-point, two traverse sampling regime was established for the particulate tests (Fig. 2 and 2a). Each point was sampled for two and one-half minutes resulting in the final sample volumes of about 1.2 cubic meters.

Velocities were measured with an S-type pitot tube and oil manometer. The probe and connecting glassware were brushed and rinsed with distilled water and acetone into a glass sample bottle after sample completion. Flue gas analysis (O₂ and CO₂) was conducted with Fyrite analysers and an on-line CEM system. Cyclonic flow was <u>not</u> present in the stack.

Figure 1: EPA Method 5 Particulate Sampling Train

Figure - 2 Location of Traverse Points in Circular Stacks

(inches from inside wall to traverse point)

Client Stack I.D.:	All Roads - Baghouse

Diameter (inches)	54		
Total Points	24	Diameters Upstream:	1
# of Ports Used	2		
Points / Traverse	12	Diameters Downstream:	3.5

Point	Distance from Wall	^	
1	1.1	- ^	
2	3.6	^	distance A*
3	6.4	sample lo	ocation
4	9.6		
5	13.5	^	
6	19.2	^	
7	34.8	^	
8	40.5	^	distance B*
9	44.4	^	
10	47.6	^	
11	50.4	^	
12	52.9	^	
		^<	< << < < <

*	distance A :	duct diameters	upstream	from	flow	disturbance
---	--------------	----------------	----------	------	------	-------------

* distance B : duct diameters downstream from flow disturba	nce
---	-----

< < < < : flow direction

Figure 2a Location of Traverse Points in Circular Stacks

(percent of diameter from inside wall to traverse point)

Traverse Point Number on a	Number of Traverse Points on a Diameter					
Diameter	2	4	6	8	10	12
1	14.6%	6.7%	4.4%	3.2%	2.6%	2.1%
2	85.4%	25.0%	14.6%	10.5%	8.2%	6.7%
3		75.0%	29.6%	19.4%	14.6%	11.8%
4		93.3%	70.4%	32.3%	22.6%	17.7%
5			85.4%	67.7%	34.2%	25.0%
6			95.6%	80.6%	65.8%	35.6%
7				89.5%	77.4%	64.4%
8				96.8%	85.4%	75.0%
9					91.8%	82.3%
10					97.4%	88.2%
11						93.3%
12						97.9%

A. Lanfranco and Associates Inc. Surrey, BC, (604) 881-2582

CEM System for Organics, CO and O₂

Continuous emission monitoring (CEM) was conducted for Organics (THC)/ $CO/O_2/CO_2$ using A. Lanfranco and Associates Inc. CEM mobile laboratory. This unit is a trailer with the following instrumentation:

Name	CAI ZPA Analyzer	VIG FID	NOxygen	
Manufacturer	California Analytical	Vig Industries, Inc.	California Analytical	
	Instruments		Instruments	
Model	ZPA	20SHy10NAQT	650 NOxygen	
Serial	N0C0606	7860819	U06080	
Number				
Parameters	O_2 , SO_2 , CO_2 , CO	THC, VOC	NO_x, O_2	
Ranges	O ₂ : 0-25%, CO ₂ : 0-40%,	0-10, 0-100, 0-1000, or 0-	NO/NO _x : 0-1 to 3000 ppm	
	SO ₂ : 0-200 or 0-2000 ppm,	10000 ppm	(user defined), O ₂ : 0-25%	
	CO: 0-500 or 0-2500 ppm			
Analyzer	NDIR (non-dispersive	FID - Flame Ionizing	Chemilumunescent and	
Туре	infrared) and paramagnetic	Detector	paramagnetic	
Description	This instrument measures	The Total Hydrocarbon	The CAI Model 650	
	the concentration of SO_2 ,	Analyzer Model-20-S	NOx/O2 Analyzer is a	
	CO_2 , and CO contained in	measures concentrations of	highly sensitive	
	sampling gas on the	a wide variety of	chemiluminescent (CLD)	
	principle that different atomic molecules have an	hydrocarbons in gas mixtures and in air using a	gas analyzer and a reliable	
	absorption spectrum in the	Heated Flame Ionization	paramagnetic oxygen analyzer. It measures	
	wave band of infrared rays,	Detector (FID). The	oxides of nitrogen gas and	
	and the intensity of	process starts with a	dry basis oxygen	
	absorption is determined	hydrogen flame. The	concentrations in industrial	
	by the Lambert-Beer law.	resulting flame burns such	and vehicle emission	
	\dot{O}_2 is measrued with a	a temperature as to	applications.	
	separate paramagnetic	pyrolyze most organic		
	sensor	compounds producing ions		
		and electrons in proportion		
		to the concentration of		
		carbon atoms present. Two		
		plates are presented to the		
		ions, one plate is		
		electrically charged, the other plate, the collector is		
		attached to a current to		
		voltage amplifier. The ions		
		are attracted to the		
		collector where upon the		
		ions cause a current to be		
		induced.		

A diagram of the sampling, conditioning and analyzer system is provided in Figure 3. With this system the stack gas is withdrawn from the source through a coarse filter and stainless steel probe with associated pumps, filters and water removal components. The THC analyzer withdrew a side-stream of the filtered gas for hot FID analysis.

Prior to compliance testing and between each test all measuring instrumentation was calibrated with Protocol 1 and NIST Traceable, 1% certified calibration gas standards. Calibration gas certificates are appended.

Figure 3 – CEM Measurement System Schematic

3.2 <u>Analytical Techniques</u>

Gravimetric analysis of the particulate samples was conducted by A. Lanfranco and Associates Inc. at their Surrey laboratory. The filters were conditioned by drying at 105 °C and desiccating for 24 hours. Final weighing of the filter occurred after the conditioning process, at which time the initial weight of the filter was subtracted. Probe washings were evaporated to dryness in porcelain dishes, desiccated for 24 hours and weighed. Blanks were carried through all procedures

CEM data was collected by data acquisition system by comparing stack gas responses to calibration gas responses.

Cylinder	Cylinder		Pressure	THC	СО	O_2	CO ₂
Name	NIST Number	Expiry Date	(PSI)	(ppm)	(ppm)	(Vol. %)	(Vol. %)
Zero Gas (N ₂)	EB0091075	N/A	1300	0	0	0	0
1 Gas	T0M85AE	15-Apr-32	1850	-	504.4	-	-
2 Gas	AS759544	18-Jul-31	500	-	242.6	-	-
Mid Meth	CC137247	06-Feb-32	1800	45.05	-	-	-
High Meth	CC341054	18-Jan-26	1000	87.5	-	-	-
O_2/CO_2	CC106742	06-Jul-31	800	-	-	11.00	10.94

Calibration gas mixtures used were:

4 **RESULTS**

The results of the particulate and stack parameters were calculated using a computer program consistent with reporting requirements of Metro Vancouver. Standard conditions used were 20 °C and 101.325 kPa (dry).

Detailed test results are presented in Table 1. Supporting data is presented in Tables 2, 3 and the Appendices. CEM minutely averages are presented in Appendix 1. Corrections to 16% O₂ were made with CEM data. Total Hydrocarbons are expressed as Methane (CH₄).

Parameter		Test 1	Test 2	Test 3	Average
Test Date		1-Aug-24	1-Aug-24	1-Aug-24	
Test Time		7:40 - 8:42	8:55 - 9:58	10:10 - 11:13	
CEM Test Time		7:40 - 8:40	8:55 - 9:55	10:10 - 11:10	
Duration	(minutes)	60	60	60	
Particulate Particulate	(mg/Sm ³) (mg/Sm ³ @ 16% O ₂)	3.62 2.22	1.14 0.69	2.42 1.45	2.39 1.45
Particulate	(kg/hr)	0.11	0.03	0.07	0.07
Particulate	(kg/day)	2.67	0.84	1.79	1.77
Flowrate Flowrate	(Sm ³ /min) (Am ³ /min)	513 933	510 943	514 939	512 938
Temperature	(°C)	114	120	120	118
CO THC	(mg/Sm ³ @ 16% O ₂) (mg/Sm ³ @ 16% O ₂)		69.4 11.7	56.6 10.2	65.2 11.9
O ₂	(vol % dry)	12.9	12.8	12.7	12.8
CO ₂	(vol % dry)	4.56	4.62	4.72	4.63
H ₂ O	(vol %)	27.5	27.7	26.7	27.3
Isokinetic Variation	1 (%)	99.8	101	100	100

TABLE 1: <u>Baghouse Stack Emission Test Results</u>

Standard conditions (S) of 20 $^{\circ}\mathrm{C}$ and 101.325 kPa dry

Run	Date	Run Time	Production Rate (Tonnes/hr)	Mix Temp. (°C)	RAP
Run 1	1-Aug-24	7:40 - 8:42	190	155	16%
Run 2	1-Aug-24	8:55 - 9:58	205	160	16%
Run 3	1-Aug-24	10:10 - 11:13	205	158	16%
Average			200	158	16%

TABLE 2: PROCESS OPERATING CONDITIONS

TABLE 3: GRAMS PER TONNE OF ASPHALT

Parameter	Mass Emission (grams/tonne of asphalt)				
Particulate Matter	0.22				
Carbon Monoxide	10.0				
Total Hydrocarbons	1.83				

5 DISCUSSION OF RESULTS

Particulate emissions from the asphalt plant ranged from 0.69 to 2.22 mg/Sm³ at 16% O₂, averaging 1.45 mg/Sm³ at 16% O₂. This result is well below the permitted level of 30 mg/Sm³ @ 16% O₂ and indicates that the particulate abatement system is functioning at an acceptable level.

The carbon monoxide, organics, volumetric flowrate and particulate for this survey are in compliance with All Roads Construction Ltd. Permit GVA1145 dated August 30, 2022.

There were no problems encountered in sample collection or analysis. Particulate samples were collected isokinetically at all points and the process operated in a normal manner during testing. The test results, therefore, are considered to be an accurate representation of emission characteristics for the process conditions maintained on the test date.

APPENDIX 1

COMPUTER OUTPUTS of

MEASURED and CALCULATED DATA

Client: Jobsite: Source:	All Roads Coquitlam, BC Baghouse Stac		Date: Run: Run Time:	1-Aug-24 1 - Particulate 7:40 - 8:42
Particulate Concentration	on:	3.6 mg/dscm 2.0 mg/Acm		5 gr/dscf 9 gr/Acf
		2.2 mg/dscm (@ 16% O2)	0.0010) gr/dscf (@ 16% O2)
Emission Rate:		0.11 kg/hr	0.246	ō lb/hr
Sample Gas Volume: Total Sample Time:		1.1754 dscm 60.0 minutes	41.510) dscf
Average Isokineticity:		99.8 %		
Flue Gas Characteristic	S			
	Moisture:	27.46 %		
	Temperature	114.2 oC	237.5	5 oF
	Flow	513.4 dscm/min 8.56 dscm/sec 932.9 Acm/min	302.2) dscf/min 2 dscf/sec 5 Acf/min
	Velocity	10.523 m/sec	34.52	2 f/sec
	Gas Analysis	12.92 % O2	4.56	5 % CO2
		29.246 Mol. Wt (g/gmole) Dry	26.158	8 Mol. Wt (g/gmole) Wet
* Standard Conditions:		Metric: 20 deg C, 101.325 kPa Imperial: 68 deg F, 29.92 in.Hg		

Client:	All Roads	Date:	1-Aug-24
Jobsite:	Coquitlam, BC	Run:	1 - Particulate
Source:	Baghouse Stack	Run Time:	7:40 - 8:42

Control Unit (Y)	1.0001	Gas Analysis (Vol. %	%):	Condensate Collection:
Nozzle Diameter (in.)	0.3340	CO2	O2	Impinger 1 (grams) 215.0
Pitot Factor	0.8557	CEMS 4.56	12.92	Impinger 2 (grams) 85.0
Baro. Press. (in. Hg)	30.00			Impinger 3 (grams) 18.0
Static Press. (in. H2O)	-0.15			Impinger 4 (grams) 15.8
Stack Height (ft)	40			
Stack Diameter (in.)	54.0	Average = <u>4.56</u>	<u>12.92</u>	
Stack Area (sq.ft.)	15.904			Total Gain (grams) 333.8
Minutes Per Reading	2.5			
Minutes Per Point	2.5			
Port Length (inches)	3.5	Collection:		
		Filter (grams)	0.00005	
		Washings (grams)	0.00420	

			Total (gram	s)	<u>0.00425</u>					
						Dry Gas Temperature			Wall	
Traverse	Point	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Stack	Dist.	Isokin
		(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(oF)	(in.)	(%)
		0.0	232.628							
1	1	2.5	234.380	0.250	1.56	76	76	227	1.1	99.6
	2	5.0	236.200	0.270	1.68	76	76	229	3.6	99.7
	3	7.5	237.990	0.260	1.61	76	76	231	6.4	100.0
	4	10.0	239.800	0.270	1.66	75	75	235	9.6	99.7
	5	12.5	241.640	0.280	1.72	75	75	237	13.5	99.7
	6	15.0	243.490	0.280	1.72	78	78	237	19.2	99.7
	7	17.5	245.370	0.290	1.78	78	78	241	34.8	99.9
	8	20.0	247.180	0.270	1.65	77	77	242	40.5	99.9
	9	22.5	248.990	0.270	1.64	77	77	244	44.4	100.0
	10	25.0	250.860	0.290	1.77	78	78	244	47.6	99.5
	11	27.5	252.700	0.280	1.71	78	78	244	50.4	99.7
	12	30.0	254.340	0.220	1.35	79	79	243	52.9	99.9
		0.0	254.340							
2	1	2.5	256.060	0.240	1.49	81	81	237	1.1	99.5
	2	5.0	257.750	0.230	1.42	81	81	237	3.6	99.9
	3	7.5	259.370	0.210	1.30	82	82	237	6.4	100.0
	4	10.0	261.020	0.220	1.37	82	82	236	9.6	99.4
	5	12.5	262.680	0.220	1.37	83	83	237	13.5	99.9
	6	15.0	264.370	0.230	1.43	83	83	237	19.2	99.5
	7	17.5	266.100	0.240	1.49	84	84	238	34.8	99.6
	8	20.0	267.870	0.250	1.55	84	84	238	40.5	99.9
	9	22.5	269.650	0.250	1.56	86	86	238	44.4	100.1
	10	25.0	271.430	0.250	1.56	86	86	237	47.6	100.0
	11	27.5	273.240	0.260	1.63	86	86	237	50.4	99.7
	12	30.0	274.830	0.200	1.25	87	87	237	52.9	99.6
		_	Average:	0.251	1.553	80.3	80.3	237.5		99.8

Client: Jobsite: Source:	All Roads Coquitlam, BO Baghouse Stac		Date: Run: Run Time:	1-Aug-24 2 - Particulate 8:55 - 9:58
Particulate Concentrati	on:	1.1 mg/dscm 0.6 mg/Acm		5 gr/dscf 3 gr/Acf
		0.7 mg/dscm (@ 16% O2	2) 0.0003	3 gr/dscf (@ 16% O2)
Emission Rate:		0.03 kg/hr	0.07	7 lb/hr
Sample Gas Volume: Total Sample Time:		1.1854 dscm 60.0 minutes	41.864	4 dscf
Average Isokineticity:		101.2 %		
Flue Gas Characteristic	s			
	Moisture:	27.68 %		
	Temperature	119.7 oC	247.	5 oF
	Flow	510.2 dscm/min 8.50 dscm/sec 943.2 Acm/min	300.3	7 dscf/min 3 dscf/sec 3 Acf/min
	Velocity	10.639 m/sec	34.90) f/sec
	Gas Analysis	12.77 % O2	4.62	2 % CO2
		29.249 Mol. Wt (g/gmole) D	ry 26.130	5 Mol. Wt (g/gmole) Wet
* Standard Conditions:		Metric: 20 deg C, 101.325 kPa Imperial: 68 deg F, 29.92 in.Hg		

Client:	All Roads	Date:	1-Aug-24
Jobsite:	Coquitlam, BC	Run:	2 - Particulate
Source:	Baghouse Stack	Run Time:	8:55 - 9:58

Control Unit (Y)	1.0001	Gas Analysis (Vol. %	():	Condensate Collection:
Nozzle Diameter (in.)	0.3340	CO2	O2	Impinger 1 (grams) 265.0
Pitot Factor	0.8557	CEMS 4.62	12.77	Impinger 2 (grams) 58.0
Baro. Press. (in. Hg)	30.00			Impinger 3 (grams) 5.0
Static Press. (in. H2O)	-0.15			Impinger 4 (grams) 12.4
Stack Height (ft)	40			
Stack Diameter (in.)	54.0	Average = <u>4.62</u>	<u>12.77</u>	
Stack Area (sq.ft.)	15.904			Total Gain (grams) <u>340.4</u>
Minutes Per Reading	2.5			
Minutes Per Point	2.5			
Port Length (inches)	3.5	Collection:		
		Filter (grams)	0.00005	
		Washings (grams)	0.00130	

			Total (gram	s)	0.00135					
						Dry Gas Temperature			Wall	
Traverse	Point	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Stack	Dist.	Isokin.
		(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(oF)	(in.)	(%)
		0.0	275.008							
	1	2.5	276.730	0.230	1.46	89	89	246	1.1	101.2
	2	5.0	278.490	0.240	1.52	89	89	246	3.6	101.3
	3	7.5	280.170	0.220	1.40	89	89	246	6.4	100.9
	4	10.0	281.860	0.220	1.40	90	90	246	9.6	101.4
	5	12.5	283.550	0.220	1.40	90	90	245	13.5	101.3
	6	15.0	285.280	0.230	1.47	91	91	245	19.2	101.2
	7	17.5	287.010	0.230	1.47	91	91	244	34.8	101.2
	8	20.0	288.810	0.250	1.59	90	90	246	40.5	101.3
	9	22.5	290.610	0.250	1.59	90	90	246	44.4	101.3
	10	25.0	292.410	0.250	1.59	91	91	248	47.6	101.3
	11	27.5	294.280	0.270	1.72	91	91	248	50.4	101.3
	12	30.0	295.930	0.210	1.33	91	91	248	52.9	101.2
		0.0	295.930							
	1	2.5	297.730	0.250	1.60	92	92	246	1.1	101.0
	2	5.0	299.640	0.280	1.79	92	92	246	3.6	101.3
	3	7.5	301.480	0.260	1.66	92	92	246	6.4	101.2
	4	10.0	303.350	0.270	1.72	92	92	246	9.6	100.9
	5	12.5	305.250	0.280	1.78	92	92	250	13.5	101.0
	6	15.0	307.160	0.280	1.78	93	93	250	19.2	101.4
	7	17.5	309.100	0.290	1.84	93	93	250	34.8	101.2
	8	20.0	310.980	0.270	1.72	94	94	250	40.5	101.4
	9	22.5	312.860	0.270	1.72	95	95	251	44.4	101.3
	10	25.0	314.810	0.290	1.85	95	95	250	47.6	101.3
	11	27.5	316.730	0.280	1.79	96	96	250	50.4	101.4
	12	30.0	318.470	0.230	1.47	96	96	250	52.9	101.3
			Average:	0.253	1.611	91.8	91.8	247.5		101.2

Client: Jobsite: Source:	All Roads Coquitlam, Bo Baghouse Stae		Date: Run: Run Time:	1-Aug-24 3 - Particulate 10:10 - 11:13
Particulate Concentration:		2.4 mg/dscm 1.3 mg/Acm		1 gr/dscf 6 gr/Acf
		1.4 mg/dscm (@ 16% O2)	0.000	06 gr/dscf (@ 16% O2)
Emission Rate:		0.07 kg/hr	0.16	i4 lb/hr
Sample Gas Volume: Total Sample Time:		1.1798 dscm 60.0 minutes	41.66	i3 dscf
Average Isokineticity:		100.1 %		
Flue Gas Characteristic	s			
	Moisture:	26.72 %		
	Temperature	120.3 oC	248	6 oF
	Flow	513.7 dscm/min 8.56 dscm/sec 938.8 Acm/min	302	0 dscf/min 3 dscf/sec 3 Acf/min
	Velocity	10.589 m/sec	34.7	/4 f/sec
	Gas Analysis	12.72 % O2	4.7	2 % CO2
		29.264 Mol. Wt (g/gmole) Dry	26.25	4 Mol. Wt (g/gmole) Wet
* Standard Conditions:		Metric: 20 deg C, 101.325 kPa Imperial: 68 deg F, 29.92 in.Hg		

Client:	All Roads	Date:	1-Aug-24
Jobsite:	Coquitlam, BC	Run:	3 - Particulate
Source:	Baghouse Stack	Run Time:	10:10 - 11:13

Control Unit (Y)	1.0001	Gas Analysis (Vol.	%):	Condensate Collection:
Nozzle Diameter (in.)	0.3340	CO2	O2	Impinger 1 (grams) 214.0
Pitot Factor	0.8557	CEMS 4.72	12.72	Impinger 2 (grams) 95.0
Baro. Press. (in. Hg)	30.00			Impinger 3 (grams) 3.0
Static Press. (in. H2O)	-0.15			Impinger 4 (grams) 10.8
Stack Height (ft)	40			
Stack Diameter (in.)	54.0	Average = <u>4.72</u>	<u>12.72</u>	
Stack Area (sq.ft.)	15.904			Total Gain (grams) 322.8
Minutes Per Reading	2.5			
Minutes Per Point	2.5			
Port Length (inches)	3.5	Collection:		
		Filter (grams)	0.00005	
		Washings (grams)	0.00280	

			Total (gram	s)	<u>0.00285</u>	_				
						Dry Ga	as Temperatu	ire	Wall	
Traverse	Point	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Stack	Dist.	Isokin.
		(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(oF)	(in.)	(%)
		0.0	318.934							
	1	2.5	320.750	0.250	1.60	97	97	250	1.1	100.1
	2	5.0	322.670	0.280	1.79	97	97	250	3.6	100.1
	3	7.5	324.520	0.260	1.67	97	97	250	6.4	100.0
	4	10.0	326.410	0.270	1.73	97	97	257	9.6	100.8
	5	12.5	328.330	0.280	1.79	97	97	250	13.5	100.1
	6	15.0	330.250	0.280	1.79	97	97	250	19.2	100.1
	7	17.5	332.210	0.290	1.86	98	98	249	34.8	100.1
	8	20.0	334.100	0.270	1.73	98	98	249	40.5	100.1
	9	22.5	335.990	0.270	1.73	98	98	249	44.4	100.1
	10	25.0	337.920	0.280	1.80	98	98	248	47.6	100.3
	11	27.5	339.780	0.260	1.67	98	98	248	50.4	100.3
	12	30.0	341.530	0.230	1.48	98	98	248	52.9	100.2
		0.0	341.530							
	1	2.5	343.280	0.230	1.48	99	99	247	1.1	100.0
	2	5.0	345.070	0.240	1.55	99	99	247	3.6	100.1
	3	7.5	346.780	0.220	1.42	99	99	247	6.4	99.9
	4	10.0	348.490	0.220	1.42	99	99	247	9.6	99.9
	5	12.5	350.200	0.220	1.42	99	99	247	13.5	99.9
	6	15.0	351.910	0.220	1.42	99	99	247	19.2	99.9
	7	17.5	353.660	0.230	1.49	100	100	247	34.8	99.8
	8	20.0	355.520	0.260	1.68	100	100	248	40.5	99.9
	9	22.5	357.350	0.250	1.61	100	100	248	44.4	100.2
	10	25.0	359.180	0.250	1.61	100	100	248	47.6	100.2
	11	27.5	361.040	0.260	1.68	100	100	248	50.4	99.9
	12	30.0	362.710	0.210	1.36	100	100	248	52.9	99.7
			Average:	0.251	1.616	98.5	98.5	248.6		100.1

A. Lanfranco and Associates Inc. METLab CEM Report

Client:	All Roads - Coquitlam, B	С			Moisture % =
Source:	Baghouse		O2 Correction	16	27.46
Run:	1	02	Year: CO ₂	2024 CO	тнс
Date	Time	(Vol. %)	(Vol. %)	(ppm)	(ppm as CH ₄)
1-Aug 1-Aug	741 742	13.15 13.12	4.53 4.50	111.41 107.79	39.82 37.91
1-Aug 1-Aug	742	13.12	4.50	107.79	35.32
1-Aug	744	13.14	4.52	109.70	36.55
1-Aug	745	13.32	4.44	106.18	33.30
1-Aug	746	13.24	4.43	102.86	33.95
1-Aug	747	13.32	4.43	102.66 107.08	32.06
1-Aug 1-Aug	748 749	13.10 13.26	4.53 4.46	107.08	34.01 31.18
1-Aug	750	13.26	4.42	103.16	31.50
1-Aug	751	12.81	4.61	103.86	30.69
1-Aug	752	12.74	4.74	112.32	33.90
1-Aug	753	12.81	4.71	108.90	32.03
1-Aug 1-Aug	754 755	12.91 13.02	4.69 4.57	108.69 102.25	30.33 27.76
1-Aug	756	12.95	4.59	98.73	26.60
1-Aug	757	12.79	4.69	103.36	27.22
1-Aug	758	12.79	4.70	103.56	27.80
1-Aug	759	12.79	4.67	103.96	25.21
1-Aug 1-Aug	800 801	12.92 12.81	4.67 4.69	102.66 102.35	25.80 26.23
1-Aug	802	12.76	4.69	100.34	24.24
1-Aug	803	12.78	4.67	97.12	21.48
1-Aug	804	12.77	4.71	96.21	22.32
1-Aug	805 806	12.94 12.86	4.68 4.63	97.52 96.01	23.08 21.46
1-Aug 1-Aug	807	12.80	4.65	94.20	21.46
1-Aug	808	12.89	4.68	98.23	25.02
1-Aug	809	12.80	4.72	99.03	23.63
1-Aug	810	12.79	4.69	98.43	23.42
1-Aug 1-Aug	811 812	12.88 13.31	4.64 4.53	97.62 94.50	23.87 20.71
1-Aug	813	13.13	4.02	87.76	20.84
1-Aug	814	13.00	4.06	93.90	24.81
1-Aug	815	13.04	4.03	101.35	27.13
1-Aug	816	12.94	4.08	104.97	28.29
1-Aug 1-Aug	817 818	12.84 12.88	4.10 4.10	104.27 105.57	27.13 27.84
1-Aug 1-Aug	819	12.80	4.10	105.57	28.84
1-Aug	820	13.39	4.20	105.47	26.73
1-Aug	821	12.77	4.75	94.00	18.85
1-Aug	822	12.94	4.62	80.72	15.79
1-Aug 1-Aug	823 824	12.90 12.74	4.64 4.68	73.87 71.86	13.32 13.59
1-Aug	825	12.77	4.00	80.41	16.94
1-Aug	826	12.84	4.66	87.06	18.88
1-Aug	827	12.94	4.64	86.65	17.60
1-Aug	828	12.91	4.63	84.84	17.08
1-Aug 1-Aug	829 830	12.83 12.71	4.66 4.72	83.43 84.34	16.71 16.52
1-Aug	831	12.65	4.78	85.55	16.85
1-Aug	832	12.89	4.64	85.35	16.89
1-Aug	833	12.65	4.76	89.37	18.15
1-Aug	834	12.90	4.66	91.79 91.48	18.24 18.56
1-Aug 1-Aug	835 836	13.00 11.98	4.61 4.59	91.48	18.75
1-Aug	837	12.77	4.66	92.19	19.63
1-Aug	838	12.84	4.66	92.39	18.96
1-Aug	839	12.94	4.63	95.31	19.71
1-Aug	840	12.96	4.62	99.03	20.74
	Average	12.92	4.56	97.2	24.6
	Minimum	11.98	4.02	71.9	13.3
	Maximum	13.39	4.78	112.3	39.8
Mass Con	centration (mg/m3 dry)	<u>n/a</u>	n/a	<u>113.2</u>	22.6
Mass Concentration	n (mg/m3 dry) Corrected to 16% O	2		<u>69.5</u>	<u>13.9</u>
	Range	25.0	20.00	500.0	100.0
Calibration Su	mmary	02	CO2	co	THC
Gas (Cert. Valu		11.00	10.94	242.6	45.1
Analyzer Initial S		11.18	10.91	242.1	45.35
Analyzer Initial Z		0.21	0.01	-0.35	-0.35
Initial Gas Respo	onse	11.31	10.85	242.9	45.4
Final Gas Respo	onse	11.12	10.99	248.2	43.7
Initial Zero Resp		0.32	0.09	1.6	-0.35
Final Zero Response 0.04 0.06 7.4 0.74					
Error Summar					
	r((+/- 2% or 5% THC)	0.7%	-0.1%	-0.1%	0.7%
	rr (+/- 2% or 5% THC)	0.8%	0.1%	-0.1%	-0.4%
Initial Span Syste Final Span Syste		0.5% -0.2%	-0.3% 0.4%	0.2% 1.2%	0.0% -1.6%
Initial Zero Syste		0.4%	0.4%	0.4%	0.0%
Final Zero Syste	n (+/- 5%)	-0.7%	0.3%	1.6%	1.1%
Test Span Drift	(+/- 3%)	-0.8%	0.7%	1.1%	-1.6%
Test Zero Drift	(+/- 3%)	-1.1%	-0.2%	1.2%	1.1%

Baghouse Stack - Run 1 (August 1, 2024) All Roads - Coquitlam, BC METLab CEM Results

A. Lanfranco and Associates Inc.

A. Lanfranco and Associates Inc. METLab CEM Report

Client:	All Roads - Coquitlam, BC			Moisture % =		
Source:	Baghouse		O2 Correction	16	27.68	
Run:	2	02	Year: CO ₂	2024 CO	тнс	
Date	Time	(Vol. %)	(Vol. %)	(ppm)	(ppm as CH ₄) 19.68	
1-Aug 1-Aug	856 857	12.78 12.67	4.62 4.65	92.60 91.69	19.68	
1-Aug	858	12.82	4.62	93.51	20.02	
1-Aug 1-Aug	859 900	12.85 12.91	4.58 4.56	94.01 90.79	19.89 19.20	
1-Aug	901	12.91	4.50	90.28	19.20	
1-Aug	902	12.87	4.55	91.09	19.82	
1-Aug 1-Aug	903 904	12.89 12.81	4.57 4.61	93.51 91.29	20.33 19.03	
1-Aug	905	12.89	4.52	87.97	18.03	
1-Aug	906	12.91	4.54	88.67	18.35	
1-Aug 1-Aug	907 908	12.89 12.72	4.56 4.63	88.37 92.70	16.72 19.95	
1-Aug	909	12.71	4.60	89.48	18.47	
1-Aug	910	12.79	4.65	94.52	20.61	
1-Aug 1-Aug	911 912	12.79 12.78	4.63 4.55	95.62 94.21	20.30 20.81	
1-Aug	913	12.87	4.57	94.31	20.12	
1-Aug	914 915	12.85 12.80	4.60 4.61	92.90 91.49	19.19	
1-Aug 1-Aug	916	12.60	4.61	91.49	17.90 18.79	
1-Aug	917	12.87	4.61	106.71	24.36	
1-Aug 1-Aug	918 919	12.77 12.65	4.61 4.64	105.40 104.09	23.32 24.30	
1-Aug	920	12.65	4.64	104.09	24.30 23.57	
1-Aug	921	12.76	4.64	105.50	25.11	
1-Aug 1-Aug	922 923	12.92 12.86	4.57 4.56	103.49 101.17	23.37 23.10	
1-Aug	924	12.80	4.58	103.18	23.10	
1-Aug	925	12.80	4.58	102.08	22.14	
1-Aug 1-Aug	926 927	12.66 12.64	4.65 4.71	101.87 103.69	22.24 22.31	
1-Aug	928	12.89	4.58	106.11	24.30	
1-Aug	929	12.78	4.57	115.48	27.36	
1-Aug 1-Aug	930 931	12.80 12.81	4.64 4.60	123.64 114.98	27.67 24.04	
1-Aug	932	12.69	4.67	109.53	22.65	
1-Aug	933	12.75	4.64	104.09	21.63	
1-Aug 1-Aug	934 935	12.89 12.92	4.56 4.54	97.44 96.73	18.88 19.74	
1-Aug	936	12.75	4.63	98.95	19.49	
1-Aug	937 938	12.72 12.73	4.61 4.65	97.54 99.45	18.34 19.94	
1-Aug 1-Aug	939	12.73	4.60	101.97	20.91	
1-Aug	940	12.80	4.57	101.87	21.84	
1-Aug 1-Aug	941 942	12.72 12.74	4.60 4.65	103.79 102.98	22.01 21.20	
1-Aug	943	12.75	4.63	102.30	20.89	
1-Aug	944	12.64	4.70	102.78	21.36	
1-Aug 1-Aug	945 946	12.77 12.79	4.62 4.60	102.18 100.66	20.70 21.10	
1-Aug	947	12.64	4.66	101.07	21.76	
1-Aug 1-Aug	948 949	12.56 12.75	4.71 4.66	101.67 100.16	21.51 20.58	
1-Aug	950	12.73	4.00	98.55	20.58	
1-Aug	951	12.72	4.65	96.63	19.41	
1-Aug 1-Aug	952 953	12.71 12.65	4.64 4.66	94.11 94.52	18.67 19.28	
1-Aug	954	12.47	4.00	95.22	18.76	
1-Aug	955	12.65	4.72	94.92	19.58	
	Average	12.77	4.62	98.8	20.9	
	Minimum Maximum	12.47 12.92	4.52 4.76	88.0 123.6	16.7 27.7	
Mass Co	ncentration (mg/m3 dry)	<u>n/a</u>	<u>n/a</u>	<u>115.1</u>	<u>19.3</u>	
Mass Concent	ration (mg/m3 dry) Corrected to	1 <u>6% O2</u>		<u>69.4</u>	<u>11.7</u>	
	Range	25.0	20.00	500.0	100.0	
Calibration		02	CO2	co	THC	
Gas (Cert. V		11.00	10.94	242.6	45.1	
Analyzer Initi Analyzer Initi		11.18 0.21	10.91 0.01	242.1 -0.35	45.35 -0.35	
Initial Gas Re	sponse	11.12	10.99	248.2	43.7	
Final Gas Re		10.94	10.89	248.7	44.2	
Initial Zero R		0.04	0.06	7.4	0.74	
Final Zero Re		0.09	0.04	8.0	0.20	
Error Sum	<u>mary</u> . Errc (+/- 2% or 5% TH(0.7%	-0.1%	-0.1%	0.70/	
	o Erri (+/- 2% or 5% TH)	0.7%	-0.1%	-0.1%	0.7% -0.4%	
Initial Span S	Syster (+/- 5%)	-0.2%	0.4%	1.2%	-1.6%	
	ysten (+/- 5%) ysterr (+/- 5%)	-1.0% -0.7%	-0.1% 0.3%	1.3% 1.6%	-1.1% 1.1%	
	/stem (+/- 5%)	-0.5%	0.2%	1.7%	0.6%	
Test Span D	rift (+/- 3%)	-0.7%	-0.5%	0.1%	0.5%	

Baghouse Stack - Run 2 (August 1, 2024) All Roads - Coquitlam, BC METLab CEM Results

A. Lanfranco and Associates Inc.

A. Lanfranco and Associates Inc. METLab CEM Report

Client:	ient: All Roads - Coquitlam, BC				Moisture % =		
Source: Run:	Baghouse 3		O2 Correction Year:	16 2024	26.72		
		O ₂	CO ₂	со	тнс		
Date 1-Aug	Time 1011	(Vol. %) 12.70	(Vol. %) 4.75	(ppm) 91.00	(ppm as CH ₄) 19.01		
1-Aug	1012	12.75	4.72	90.49	19.34		
1-Aug	1013	12.77	4.68	87.23	17.98		
1-Aug	1014	12.82	4.70	88.45	18.00		
1-Aug 1-Aug	1015 1016	12.68 12.75	4.74 4.68	92.63 92.73	20.48 20.52		
1-Aug	1017	12.76	4.74	92.01	20.02		
1-Aug	1018	12.80	4.72	97.21	22.66		
1-Aug	1019	12.70	4.73	98.94	23.13		
1-Aug 1-Aug	1020 1021	12.70 12.78	4.71 4.70	97.72 96.50	22.27 21.66		
1-Aug	1021	12.76	4.70	96.09	21.80		
1-Aug	1023	12.92	4.62	94.97	22.61		
1-Aug	1024	12.89	4.63	95.99	21.79		
1-Aug	1025	12.66	4.75	95.07	21.13		
1-Aug 1-Aug	1026 1027	12.72 12.78	4.72 4.72	92.42 94.66	20.90 21.42		
1-Aug	1028	12.78	4.64	90.59	20.20		
1-Aug	1029	12.90	4.64	90.18	19.88		
1-Aug	1030	12.82	4.64	85.49	18.65		
1-Aug	1031	12.78	4.69	85.29	18.51		
1-Aug 1-Aug	1032	12.74 12.77	4.72 4.73	85.80	19.13		
1-Aug	1033 1034	12.77	4.73	85.09 83.45	18.80 17.94		
1-Aug	1035	12.70	4.76	86.21	19.86		
1-Aug	1036	12.84	4.64	83.05	19.19		
1-Aug	1037	12.71	4.70	88.04	21.40		
1-Aug	1038	12.62	4.77	91.81	21.75		
1-Aug 1-Aug	1039 1040	12.56 12.79	4.82 4.71	92.93 86.82	21.40 18.28		
1-Aug	1041	12.66	4.72	83.66	19.32		
1-Aug	1042	12.73	4.75	84.47	18.72		
1-Aug	1043	12.79	4.68	82.23	18.35		
1-Aug	1044	12.63	4.75	85.09	20.06		
1-Aug 1-Aug	1045 1046	12.66 12.79	4.76 4.72	88.75 87.02	22.08 20.97		
1-Aug	1047	12.73	4.64	82.33	18.89		
1-Aug	1048	12.80	4.67	78.87	17.31		
1-Aug	1049	12.71	4.70	79.07	17.86		
1-Aug	1050	12.65	4.73	81.11	18.11		
1-Aug	1051 1052	12.63 12.83	4.78 4.69	81.11 79.18	18.48 17.89		
1-Aug 1-Aug	1052	12.83	4.69	79.18	16.08		
1-Aug	1054	12.75	4.73	76.83	17.59		
1-Aug	1055	12.67	4.73	76.73	17.21		
1-Aug	1056	12.56	4.81	76.83	17.25		
1-Aug	1057	12.70	4.73	76.22	16.88		
1-Aug 1-Aug	1058 1059	12.61 12.69	4.75 4.78	74.90 76.32	16.57 17.13		
1-Aug	1100	12.64	4.76	82.13	21.14		
1-Aug	1101	12.63	4.76	96.29	27.47		
1-Aug	1102	12.67	4.74	91.10	22.76		
1-Aug	1103	12.71	4.75	81.82	20.33		
1-Aug 1-Aug	1104 1105	12.60 12.62	4.78 4.73	80.40 72.76	19.27 17.11		
1-Aug	1106	12.66	4.77	65.93	14.69		
1-Aug	1107	12.73	4.75	62.57	13.96		
1-Aug	1108	12.68	4.74	59.55	13.15		
1-Aug	1109	12.70	4.67	59.07	13.42		
1-Aug	1110	12.82	4.71	61.55	14.05		
	Average	12.72	4.72	81.09	18.65		
	Minimum	12.56	4.64	59.07	13.15		
	Maximum	12.90	4.82	96.29	27.47		
Mass Con	centration (mg/m3 dry)	<u>n/a</u>	<u>n/a</u>	<u>94.5</u>	<u>17.0</u>		
Mass Concentra	tion (mg/m3 dry) Corrected to	16% O2		<u>56.6</u>	<u>10.2</u>		
Calibration	Range	25.0	20.00	500.0	100.0		
Calibration Gas (Cert. Va		O2 11.00	CO2 10.94	CO 242.6	THC 45.1		
Analyzer Initia		11.18	10.94	242.0	45.35		
Analyzer Initia	•	0.21	0.01	-0.35	-0.35		
Initial Gas Res		10.94	10.89	248.7	44.2		
Final Gas Res Initial Zero Re		10.93 0.09	10.85 0.04	244.1 8.0	44.4 0.20		
Final Zero Re		0.09	0.04	8.6	-0.13		
Error Summ		0.70/	0.40/	0.40/	0.70/		
	Errc (+/- 2% or 5% TH Err (+/- 2% or 5% TH	0.7% 0.8%	-0.1% 0.1%	-0.1% -0.1%	0.7% -0.4%		
Initial Span Sy		-1.0%	-0.1%	1.3%	-1.1%		
Final Span Sy	sten (+/- 5%)	-1.0%	-0.3%	0.4%	-0.9%		
Initial Zero Sy		-0.5%	0.2%	1.7%	0.6%		
Final Zero Sys Test Span Dri		-0.4% 0.0%	0.2% -0.2%	1.8% -0.9%	0.2% 0.2%		
roor opan Dh		0.0 %	-0.2%	-0.3%	0.2 /0		

Baghouse Stack - Run 3 (August 1, 2024) All Roads - Coquitlam, BC METLab CEM Results

A. Lanfranco and Associates Inc.

APPENDIX 2

CALCULATIONS

The following sections show the equations and define the variables that were used for this survey. The equations are organized in four sections. Equations 1-11 were used to calculate particulate concentration at standard conditions on a dry basis and with an Oxygen correction. Equations 11-26 were used to sample within the $100 \pm 10\%$ isokinetic variation and to confirm that sampling meets this isokinetic variation threshold. Equations 26-28 were used to calculate the volumetric flowrate of the stack flue gas. Equations 29-36 were used to calculate the results from the CEM system.

A2.1 Contaminant Concentration Calculations

С

$$=\frac{m}{V_{std}}$$
 Equation 1

$$m_{part} = m_{filter} + m_{pw} + m_{cond}$$
 Equation 2

$$m_i = m_{ana,i} - m_{blank}$$
 Equation 3

$$V_{std} = \frac{V_{std(imp)}}{35.315}$$
 Equation 4

$$V_{std(imp)} = \frac{V_{samp} \times y \times P_m \times (T_{std} + 459.67)}{P_{std} \times (T_{m(ave)} + 459.67)}$$
Equation 5

$$V_{samp} = V_{final} - V_{init}$$
 Equation 6

$$P_m = P_B + \frac{\Delta H_{ave}}{13.6}$$
 Equation 7

$$\Delta H_{ave} = \frac{1}{n} \sum_{i=1}^{n} \Delta H_{i(act)}, \text{ where } n = \text{the number of points}$$
Equation 8

$$OC = \frac{20.9 - \%O_{2c}}{20.9 - \%O_{2m}}$$
 Equation 9

$$\% O_{2m} = \frac{1}{n} \sum_{i=1}^{n} \% O_{2i}$$
, where $n =$ the number of O_2 measurements Equation 10

$$%CO_{2m} = \frac{1}{n} \sum_{i=1}^{n} %CO_{2i}$$
, where $n =$ the number of CO_2 measurements Equation 11

Where,

С	= Contaminant concentration
-	= Contaminant concentration = Contaminant mass
m	
m_i	= Net analytical mass (mg, ng, or μg)
Mana,i	= Analytical mass (mg, ng, or μg)
M blank	= Blank analytical mass (mg, ng, or μg)
<i>M</i> part	= Total particulate mass (mg)
<i>Mfilter</i>	= Net particulate gain from filter (mg)
m_{pw}	= Net particulate gain from probe wash (mg)
M cond	= Net condensable particulate from lab analysis (mg)
Vstd(imp)	= Sample volume at standard conditions (ft^3)
Vstd	= Sample volume at standard conditions (m ³)
Vsamp	= Sample volume at actual conditions (ft ³)
Vfinal	<i>= Final gas meter reading (ft³)</i>
Vinit	<i>= Initial gas meter reading (ft³)</i>
Tstd	<i>= Standard temperature (68 °F)</i>
T_m	<i>= Gas meter temperature (°F)</i>
T _{m(ave)}	= Average gas meter temperature (°F)
P_m	= Absolute meter pressure (inches of Hg)
P_B	= Barometric pressure (inches of Hg)
ΔH_{ave}	= Average of individual point orifice pressures (inches of H2O)
$\Delta H_{i(act)}$	= Individual recorded point orifice pressures (inches of H ₂ O)
00	= Oxygen correction factor (dimensionless)
%O2c	= Oxygen concentration to correct to (% dry basis)
%O2m	= Average measured stack gas oxygen concentration (% dry basis)
%CO2m	= Average measured stack gas oxygen concentration (% dry basis) = Average measured stack gas oxygen concentration (% dry basis)
70002111	- nverage measured stack gas oxygen concentration (/0 dry basis)

A.Lanfranco & Associates Inc.

Environmental Consultants

Equation 1 is the general concentration calculation used for all contaminants. The contaminant mass, m, is the net analytic mass for the given contaminant. For particulate, m is the sum of the mass contributed from probe washing and filter particulate.

Equation 16

A2.2 Isokinetic Variation Calculations

$$\Delta H_i = \frac{2.62 \times 10^7 \times c_p \times A_n \times (1 - B_{wo}) \times M_D \times (T_m + 459.67) \times \Delta p_i}{k_o \times M_w \times (T_{Stk} + 459.67)}$$
 Equation 11

$$R_m = 85.49 \times c_p \times \sqrt{\Delta p_i} \times \sqrt{\frac{(T_{stk_i} + 459.67)}{M_w \times P_B}} \times 60 \times A_n \times \frac{(T_{m_i} + 459.67) \times (1 - B_{wo})}{(T_{stk_i} + 459.67) \times y}$$
Equation 12

$$A_n = \pi \left(\frac{d_n}{24}\right)^2$$
 Equation 13

$$M_w = M_D \times (1 - B_{wo}) + 18 \times B_{wo}$$
 Equation 14

$$M_D = 0.44 \times \% CO_2 + 0.32 \times \% O_2 + 0.28 \times (100 - \% CO_2 - \% O_2)$$
 Equation 15

$$T_{Stk} = \frac{1}{n} \sum_{i=1}^{n} T_{Stk_i}$$
, where $n =$ the number of points

$$B_{wo} = \frac{V_{cond}}{V_{cond} + V_{std(imp)}}$$
 Equation 17

$$V_{cond} = 0.04707 \times V_{gain}$$
 Equation 18

$$Iso = \frac{1}{n} \sum_{i=1}^{n} Iso_i, where n = the number of points$$
 Equation 19

$$Iso_i = \frac{v_{nzi}}{v_i}$$
 Equation 20

$$v_i = 85.49 \times c_p \times \sqrt{\Delta p_i} \times \sqrt{\frac{\left(T_{Stk_i} + 459.67\right)}{\left(P_{Stk} \times M_W\right)}}$$
 Equation 21

$$v_{nzi} = \frac{(V_i - V_{i-1}) \times y \times (T_{Stk_i} + 459.67) \times (P_B + \frac{\Delta H_{i(act)}}{13.6})}{A_n \times t_i \times 60 \times (T_{m(i)} + 459.67) \times P_{stk} \times (1 - B_{wo})}$$
Equation 22

$$P_{stk} = P_B + \frac{P_g}{13.6}$$
 Equation 23

$$v_{stk} = \frac{1}{n} \sum_{i=1}^{n} v_i \text{, where } n = \text{the number of points}$$
Equation 24
$$v_{nz} = \frac{1}{n} \sum_{i=1}^{n} v_{nzi} \text{, where } n = \text{the number of points}$$
Equation 25

Where,

= Nozzle area (ft²)
= Diameter of nozzle (inches)
= Pitot coefficient (dimensionless)
= Individual point differential pressures (inches of H2O)
= Average flue gas temperature (°F), second subscript i, indicates individual
point measurements
= Calculated individual point orifice pressures (inches of H ₂ O)
<i>= Stack Static pressure (inches of H₂O)</i>
= Absolute stack pressure (inches of Hg)
= Wet gas molecular weight (g/gmol)
= Dry gas molecular weight (g/gmol)
= Stack gas carbon dioxide concentration (% dry basis)
= Stack gas oxygen concentration (% dry basis)
= Stack gas water vapour, proportion by volume
= Total volume of water vapor collected, corrected to standard conditions
(ft^3)
= Condensate gain of impinger contents (mL)
= Standard pressure (29.92 inches of Hg)
= Average flue gas velocity (ft/sec)
= Individual point flue gas velocity (ft/sec)
= Average velocity at nozzle(ft/sec)
= Individual point velocity at nozzle(ft/sec)
= Individual point isokinetic variation (%)
= Average isokinetic variation (%)
<i>= Isokinetic sampling rate (ft³/min)</i>

A2.3 Volumetric Flowrate Calculations

$$Q_{S} = Q_{A} \times \frac{(T_{Std} + 459.67)}{(T_{Stk} + 459.67)} \times \frac{P_{Stk}}{P_{Std}}$$
Equation 26
$$Q_{A} = \frac{v_{stk} \times 60 \times A_{stk}}{35.315}$$
Equation 27
$$A_{stk} = \pi \left(\frac{d}{24}\right)^{2}$$
Equation 28

Where,

$$\begin{array}{ll} Q_A & = Actual \ flowrate \ (Am^3/min) \\ Q_S & = Flowrate \ (m^3/min) \ at \ standard \ conditions \ on \ a \ dry \ basis \\ A_{stk} & = Area \ of \ stack \ (ft^2) \\ d & = Diameter \ of \ stack \ (inches) \end{array}$$

A2.4 CEM Calculations

$$[CEM]_{i} = \frac{(2 \times [CEM]_{mi} - (Z_{F} + Z_{I}))}{(S_{I} + S_{F}) - (Z_{I} + Z_{F})} \times G_{c}$$
Equation 29
$$E_{A} = \left(\frac{A_{IS} - G_{C}}{G_{C}}\right) \times 100\%$$
Equation 30

$$B_{IS} = \left(\frac{S_I - A_{IS}}{R}\right) \times 100\%$$
 Equation 31

$$B_{FS} = \left(\frac{S_F - A_{IS}}{R}\right) \times 100\%$$
 Equation 32

$$B_{IZ} = \left(\frac{Z_I - A_{IZ}}{R}\right) \times 100\%$$
 Equation 33

$$B_{FZ} = \left(\frac{Z_F - A_{IZ}}{R}\right) \times 100\%$$
 Equation 34

$$D_S = \left(\frac{S_F - S_I}{R}\right) \times 100\%$$
 Equation 35

$$D_Z = \left(\frac{Z_F - Z_I}{R}\right) \times 100\%$$
 Equation 36

Where:

[CEM]_{mi}

$$I_{mi}$$
 = One-minute average measured CEM parameter concentration (ppm or % vol)

 S_{I} = Initial calibration span gas system response (ppm or % vol)

$$S_F$$
 = Final calibration span gas system response (ppm or % vol)

$$Z_{I}$$
 = Initial calibration zero gas system response (ppm or % vol)

$$Z_F$$
 = Final calibration zero gas system response (ppm or % vol)

$$A_{IS}$$
 = Initial calibration span gas analyzer response (ppm or % vol)

$$A_{IZ}$$
 = Final calibration zero gas analyzer response (ppm or % vol)

$$E_A$$
 = Analyzer calibration error (%)

$$B_{IS}$$
 = Initial system span bias (%)

$$B_{FS}$$
 = Final system span bias (%)

$$B_{IZ}$$
 = Initial system zero bias (%)

$$B_{FZ}$$
 = Final system zero bias (%)

 D_{S} = Test span drift (%)

$$D_Z$$
 = Test zero drift (%)

APPENDIX 3

ANALYTICAL DATA

GRAVIMETRIC ANALYTICAL RESULTS

Client: Source:	All Roads Baghouse Stack		Sample Date: Location:	01-Aug-24 Coquitlam, BC
A. Lanfranco & Associates Standard (. 0			
	SOP 1.2.1 Gravimetric	e determination of total	particulate matter	
	Initial (g)	Final (g)	Net (g)	Blank Corrected Net (g)
Filters				
Run 1	0.3666	0.3662	-0.0004	ND
Run 2	0.3482	0.3474	-0.0008	ND
Run 3	0.3678	0.3670	-0.0008	ND
Blank	0.3642	0.3643	0.0001	
Probe Washes				
Run 1	121.0466	121.0519	0.0053	0.0042
Run 2	123.0822	123.0846	0.0024	0.0013
Run 3	123.6076	123.6115	0.0039	0.0028
Blank	124.9589	124.9600	0.0011	
	Run 1	Run 2	Run 3	
Silica Gels	15.8	12.4	10.8	
Task	Personnel	Date	Quality Contr	ol Y/N
Fiter Recovery:	J. Dennis	01-Aug-24	Adequate PW volum	ne: Y
PW Initial Analysis:	C. De La O	02-Aug-24	No sample leakag	ge: Y
PW, Filter and Gel Final Analysis:	L. Agassiz	08-Aug-24	Filter not compromise	ed: Y
Data entered to computer:	L. Agassiz	08-Aug-24		

Comments:

No problems encountered in sample analysis.
APPENDIX 4

FIELD DATA SHEETS

A. Lanfranco and Associates Inc.

	\sim 1			NOZZLE	star	DIAME	TER, IN.	3340	IMPINGER	INITIAL	FINAL	TOTAL GAIN
CLIENT A	LOAdas			PROBE	9251			\$ 955	VOLUMES	(mL)	(mL)	(mL)
SOURCE BACL	4043e					h-ci			Imp. #1	400	316	
PARAMETER / RUN N	PM DC/12			PORT LENG	.5	Imp. #2	100	185				
DATE 9.1.24				STATIC PRI	ESSURE, IN.	H2O	-15		Imp. #3	0	18	
OPERATOR: JO	FLD			STACK DIA			54.0)		Gust		
CONTROL UNIT	1 2090	Y 10001		STACK HEI			40	Imp. #5	Capi			
Contraction of	0 0011	Y 1.0001 ΔH@ 1,78	2			_	20	Imp. #6		 		
BAROMETRIC PRESS	SURE IN Ha	30.0	0	INITIAL LEA	KTEST	- 001	01-00		Upstream Di	ameters	1 1	
ASSUMED MOISTUR	F Bw 7	5%		FINAL LEAK		1001	alsa		Downstream			
	L, DN 61	510			(TEOT	10016	165		Bonnoardann	Diamotora		
Clock Time	Dry Gas Meter ft	Pitot ΔP	Orifice ∆H			Temperature °	F		Pump Vac.	Fy	rites	1
		IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	O ₂	
Point 7:40	232,628			Outlet	Buok	11000	Don	Exit		Vol. %	Vol. %	
1.10	234.38	.72	1.56	1	777-1	250	251	89				
	221.20	125		76	227	230	00 (21	1.0		Em	
2 5	236,20		4168	The		200	Disc	00	1			
2 10	239.83	126	1.65	76	231	250	249	89	10			
			1,66	25	235	2-21		0.1	17-			
9	241.64	128	1,72	175	237	250	251	59	1.0			
Q 15	243,49	,28	1.72	79	237			000	1			
7 20	245.37	127	1,78	78	241	250	257	59	1.5			
8 20	247.18	, CF	1.65	37	242		270			-1		
9	248.99	127	1.64	77	244							
10 25	250,86	129	1,77	78	244	250	25/	55	(-)			
il	252,70	128	17	78	299							- 4
12 30	254,34	122	1:35	79	247	250	252	59	10			
				- /								
	256,06	,24	1.49	81	237	210	243	157	11-5			
2 3	257,75	123	1,42	81	237							
2 4	259:37	21	1,30	82 82	237	257	227	55	1.5			
4 10	261,02	122	1.37	452	236							
S	2104 68	22	1.37	83	237	250	252	39	2.0			
6 05	264.37	123	1.213	83	237				-			
7	266,10	124	1,48	FU	238	251	257	39	20		1 1	
\$ 20	767.87	1,25	7,55	CLI	238		1					
G	269.65	125	1.56	86	232	250	252	59	2.0			
0 25	071.43	125	1.5%	86	237		1		1.			
(1)	773,24	126	1.63	36	257	280	251	55	1.5			
12	274,83	1200	125	87	137				1			
8:42	END fost.	1.40			1027		1			1	1	
0.10	Charle 1001.					1						
	· · · · · · · · · · · · · · · · · · ·					1				1	1	
				1	1	-	1	1	1	1	1	
										1	1	
					1		1		1			

V

A. Lanfranco and Associates Inc.

	4.1	1			NOZZLE S	FLE	DIAMET	ER, IN.	3340	IMPINGER	INITIAL	FINAL	TOTAL GAIN
CLIEN	T All	ROADS			PROBE 5A-1 Cp 8557					VOLUMES	(mL)	(mL)	(mL)
SOUR	CE Rach	use								Imp. #1	100	365	
PARAN	METER / RUN N	10 PAY BC/R	2		PORT LENG	5	Imp. #2	100	158				
DATE	8111	24			STATIC PRE	ESSURE, IN.	H20	15		Imp. #3	0	15	
OPER/		FCD			STACK DIA			34.0		Imp. #4	Bel		
		TE SOON	Y 1,000	2/	STACK HEI			0.0		Imp. #5	CACI.		
	<u> </u>	C OUT	AH@ 1.7	80				de C		Imp. #6		i i	
BARO	METRIC PRESS	SURE, IN, Ha 30	1,0	00	INITIAL LEA	K TEST	(2.0	1015	/	Upstream Di	ameters		
	MED MOISTURI		10/0		FINAL LEAK		1910	6157	0	Downstream			
		6	110				,007	Sul					
	Clock Time	Dry Gas Meter ft ³	Pitot ΔP	Orifice AH			Temperature °I	7		Pump Vac.	Fvi	rites	- P
Point	CIOCK TIME		IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	0 ₂	
Fonn	8:55	275,008	114.1120	114.1120	Outlet	Stack	FIODE	BOX	Exit	IIN. IIg	Vol. %	Vol. %	
	0		170	1 611	· · · · · · · · · · · · · · · · · · ·	57114	1700	70-1		1 -			
1	-	278,49	125	1.46	941 959	246	250	257	89	1.5	CE	m	
2	5		14	452	27	246	200	300	65	1-			
3	10	280.17	122	1.40	30	246	250	252	27	115	N		
4	10	78196		1.40		246			00	1/0			
5	10	283,55	:22	440	90	245	250	257	59	10		I I	
6	15	285 28	123	lelf	91	245						↓	
7		257,01	,23	1.97	91	244	252	357	51	100			
5	20	258.81	125	1.59	90	246							
9		290,61	,25-	1,59	90	246	250	280	59	40			
10	25	292,41	,25	1.59	91	248				1			
11		299,78	,27	1,72	91	248	750	257	185	1.0			
12	30	98,93	,21	1133	91	248			1				
				1									
1		797.70	25	1,60	92	246	250	284	159	2.0		·	
2	5	799.64	,28	1,79	97	246			1 - /				
3		361,48	126	1, lale	92	246	257	253	155	200			
4	10	307:35	127	7.72	92	246	1		1				
5		305.25	128	11:78	92	250	250	248	155	2.0			
6	15	207116	128	17,78	93	20							
1		309,10	1291	11.89	013	250	250	249	159	11.5			
8	70	310,98	127.	17.72	04	250			(
17405		312.56	127	1.22	ac	251	251	250	59	1.5			
10	25	14,81	.29	1,85	04	280	1 - u f				-		
11		36173	128	1.75	96	280	250	250	59	2.0			
in		36.44	,23	147	dí	252	010	0.10		1 actor			
re	9:58	DUD Test	1000	11.17	-10	1000	1			1			
<u> </u>	-1.00	- contract	1			1				1			
-							1						
<u> </u>	1		1							1			
					1	-					<u> </u>		
u		1			1	1				1			

A. Lanfranco and Associates Inc.

	AID				NOZZLE S	t-65	DIAMET	ER, IN. 35	- 40	IMPINGER	INITIAL	FINAL	TOTAL GAIN
LIEN	NIC	OAds			PROBE S	AI	P 185	VOLUMES	(mL)	(mL)	(mL)		
OUR	CE 13ASUNO	use					Imp. #1	160	314				
ARAN	IETER / RUN N	10 phrbelle	23		PORT LENG	STH	3.	5	Imp. #2	100	195		
ATE	8124	p in co			STATIC PRI	ESSURE, IN.	H20 -/	5		lmp. #3	0	13	
PER	ATOR: GI	FCD			STACK DIA	METER	54	0		Imp. #4	AGI		
ONTI	ROL UNIT C	45 5089	Y 1.000	/	STACK HEI	GHT	40	0		Imp. #5	0	1	
	-1	0 dell	AH@ 1.780)			-100			Imp. #6		i i	
RO	METRIC PRESS	SURE, IN. Hg 30	D		INITIAL LEA	K TEST	,00 (Q)	109		Upstream Di	ameters		
	MED MOISTUR		<u> </u>		FINAL LEAK		10016			Downstream			
			r				10010	*13			Diamotoro		1
_	Clock Time	Dry Gas Meter ft ³	Pitot ΔP	Orifice AH			Temperature °I	7		Pump Vac.	Fv	rites	
oint			IN. H ₂ O	IN. H ₂ O	Dry Gas	Stack	Probe	Box	Impinger	IN. Hg	CO ₂	0 ₂	5.0
onn	12:10	318.934	111.1120	111.1120	Outlet	Stuck	11000	DOX	Exit	111. Hg	Vol. %	Vol. %	
-	/0.7	111 200		11.61	1	217	0.0		59	1.5			
5	5	24173	125	1.29	27	250	250	780	21	100	4	m	
3	2	able t		11 1 -24	01	250	200	201	01	17			
2	10	34152	126	4.87	dit	250	250	251	53	45			
1	10	326.41	,27	415	di	281	0.001	-	00	-			
>	- 1.7	328,33	128	4.79	at	250	250	250	59	20			
0	15	330:75	128	1179	dt	250	0.00	-	00	0.0			
7		352,21	:29	1,86	98	249	250	251	89	2.0			
5	20	334.10	127	lits	98	249							
7		335,99	:27.	145	945	-199	285	250	59	2.0			
b	25	155592	128	1,80	98	248							
1		39,78	,20	1.67	25	248	250	250	59	20			
17	30	341.33	,23	1,48	98	248					<u></u>		
-							li i						N. A
1		343.28	23	1,48	99	ZHY	250	253	58	1.5			
ι	5	345.02	124	1.55	90	297							
3		346,78	122	1.42	99	247	250	282	58	1.5			
l	10	348,49	122	1142	1991	THI				1	1		
0		355 10	22	1.42	00	247	ZSD	252	58	1.5			
1.	15	351.91	,22	1.42	90	297	1 and		1 20	100			
5	1 00	353.66	,23	1,40	100	197	200	702	54	200	1		
40	20	355.52	,26	1,68	100	248	10,0	00-		1			
å		357.35	:25	1.61	100	248	252	252	54	200		1	
6	15	389,18	:25	12.201	100	248	0,0	100	10				
1		361,00	126	168	100	248	250	281	58	2.0		1	
h		361.04	21	1.36	IND	108	1 / 10	1 si	20			1	
V	11112	BAKLERT	+ 01	1100	100	1.10							
	11:05	ENGLEST		-									
_		44 180. W											
_							-				<u> </u>		
		the second s								1			

A. F.

CEM FIELD DATA SHEET

Client	All Roads	Technician	LF
Source	Bashause Stack	Ambient Temp (°C)	
Date	August 1, 2024	Barometric Pressure (in. Hg)	30.03

	N ₂	H ₂	1 Gas	2 Gas	3 Gas	4 Gas	5 Gas	O ₂	Comb Air	Low Meth	Mid Meth	High Meth
Cylinder #	075		5AE	544				742			247	054
Pressure (psi)	1300	9000		500				800			1800	1000
Expiry Date			4/15/32	7/18/3				716/31			2/6/32	1/18/26
O ₂ (%)				10				11.00				
CO ₂ (%)								10.94				
CO (ppm)			504.4	242.6								
THC (ppm)											45.05	87.5
CH ₄ (ppm)												
SO ₂ (ppm)												
NOx (ppm)												
	0	<u> </u>	0	0	T	IC	S	0,	N	Dx	C	H

Analyzer	O ₂	CO2	CO	ТНС	SO ₂	NOx	CH ₄
Range	251	201.	0-500	0-100			

CEM READINGS

Time	Source	02	CO ₂	со	ТНС	SO ₂	NOx	CH₄	Response Time (sec)
Manifold	Ambient								02 Up 47
0630	N2	0.21	2.01	-0.35					0 ₂ Dn 44
	1 Gas			502.8					CO ₂ Up 49
	2 Gas			242.07					CO ₂ Dn 52
	2 Gas 02/C02	11.18	10.91						CO Up 45 CO Dn 43
									CO Dn 43
STACK 0645	Nz	0.32	0.09		-0.35				THCUP 35
0645	1 Gras			501.7 242.9					THC Dn 39
	2 Gas			242.9					SO ₂ Up
	22/602	11.31	10-85						SO ₂ Dn
	High meth				8796				NOx Up
	midmith				45.35				NOx Dn
									CH ₄ Up
Run #	N2	0.04	0.06	7.40	0.74				CH ₄ Dn
0740-0840	2 Gras 02/C02			248.2					
	02/002	11.12	10.99						
	Mid meth				43.72				
RUNHZ	Nz	0.09	0.04	8.04	0.20	nd in			
0855-0955	2Gas			248.66	1.1	8			
	02/107	10.94	10.89						
	midmeth				44.24				

LF 1 2

CEM FIELD DATA SHEET

Client
Source
Date

All	Road	S	
Ra	ahouse	Cont.	
Aux	ust 1,	2024	

Technician Ambient Temp (°C) Barometric Pressure (in. Hg)

	N ₂	H ₂	1 Gas	2 Gas	3 Gas	4 Gas	5 Gas	O ₂	Comb Air	Low Meth	Mid Meth	High Meth
Cylinder #												
Pressure (psi)												
Expiry Date												
O ₂ (%)												
CO ₂ (%)												
CO (ppm)												
THC (ppm)												
CH ₄ (ppm)												
SO ₂ (ppm)												
NOx (ppm)												
Analyzer	02	CO ₂	C	0	TI	łC	so	02	N	Dx	C	H ₄
Range												

CEM READINGS

Time	Source	02	CO2	со	ТНС	SO ₂	NOx	CH₄	Response Time (sec)
Run #3	Nz	0.12	0.04	8.56	013				O ₂ Up
Run #3 10:10 - 11:10	2 Gras			244.	2441				O ₂ Dn
	02/602	10.93	10.85						CO ₂ Up
	2 Gras O2/CO2 mid meth				44.44				CO ₂ Dn
									CO Up
									CO Dn
			-						тнс Up
									THC Dn
									SO ₂ Up
									SO ₂ Dn
									NOx Up
									NOx Dn
									CH4 Up
									CH ₄ Dn
		10							

LF

APPENDIX 5

CALIBRATION DATA and CERTIFICATIONS

A.Lanfranco & Associates inc.

EPA Method 5

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #:	CAE JO99	Date:	24-Jun-24	
Serial #:	0028-022210-1	Barometric Pressure:	29.98	(in. Hg)
		Theoretical Critical Vacuum:	14.14	(in. Hg)

11111111

 IMPORTANT
 For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

 IMPORTANT
 The Critical Orifice Coefficient, K', must be entered in English units, (th)^3'(deg R)^0.5/((in.Hg)*(min)).

IMPORTA

	DRY GAS METER READINGS								-CF		ICE READING	iS-		
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial T Inlet (dog E)	Outlet	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient	Actual Vacuum (in Hg)	Initial	bient Tempera Final	Average
-					(deg F)	(deg F)				(see above)		(deg F)	(deg F)	(deg F)
3.65	15.00	72.165	88.145	15.980	70.0	70.0	70.0	70.0	73	0.8185	16.0	70.0	75.0	72.5
1.90	16.00	88.145	100.473	12.328	70.0	70.0	72.0	72.0	63	0.5956	19.0	74.0	76.0	75.0
1.10	27.00	100.473	116.682	16.209	73.0	73.0	74.0	74.0	55	0.4606	21.0	76.0	79.0	77.5
0.65	15.00	116.682	123.550	6.868	74.0	74.0	75.0	75.0	48	0.3560	22.5	78.0	84.0	81.0
0.32	20.00	123.550	129.810	6.260	75.0	75.0	76.0	76.0	40	0.2408	24.0	85.0	88.0	82.5

DRY GA	S METER		ORIFICE		DRY GA	S METER			ORIFICE	
VOLUME CORRECTED Vm(std)	VOLUME CORRECTED Vm(std)	VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vcr(std)	VOLUME NOMINAL Vcr	CALIBRATIO Value	DN FACTOR Y Variation	CA Value	LIBRATION FA dH@ Value	CTOR Variation	Ko
(cu ft)	(liters)	(cu ft)	(liters)	(cu ft)	(number)	(number)	(in H2O)	(mm H2O)	(in H2O)	(value)
16.088	455.6	15.951	451.7	16.061	0.9915	-0.009	1.812	46.04	0.033	0.717
12.335	349.3	12.352	349.8	12.495	1.0013	0.001	1.787	45.38	0.007	0.716
16.111	456.3	16.082	455.4	16.345	0.9982	-0.002	1.730	43.93	-0.050	0.731
6.806	192.7	6.883	194.9	7.041	1.0113	0.011	1.706	43.32	-0.074	0.727
6.187	175.2	6.176	174.9	6.382	0.9982	-0.002	1.865	47.37	0.085	0.705
				Average Y>	1.0001	Average dH@>	1.780	45.2	Average Ko>	0.719

				TEMPERATU	RE CALIBRA	TION				
Calibration Stand Reference	ard>	Omega Model	CL23A S/N:T-2		nperature Devic	e Reading				
Set-Point	Sta	ck	Hot	Box	Pro	be	Imp	Out	A	ux
(deg F)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)	(deg F)	(% diff)
32	33	0.20%	31	-0.20%	29	-0.61%	33	0.20%	33	0.20%
100	101	0.18%	99	-0.18%	97	-0.54%	101	0.18%	101	0.18%
300	300	0.00%	299	-0.13%	297	-0.39%	300	0.00%	300	0.00%
500	500	0.00%	499	-0.10%	496	-0.42%	500	0.00%	500	0.00%
1000	1000	0.00%	998	-0.14%	996	-0.27%	999	-0.07%	999	-0.07%

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.02.

For Online Calibration Factor dH (9), the online office office multiple structure in inches of H20 that equates to 0.75 chm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2. For Cemperature Devicee, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Calibrated by: Liam Forrer Signature:

Date: June 24, 2024

Pitot Tube Calibration

Date: 02-Jul-24 Pbar (in.Hg): 29.88 Temp (R): 539 Dn (in.): 0.25

Pitot ID:	5A-1			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.220	0.295	31.3	0.8549	0.0007
0.350	0.470	39.5	0.8543	0.0014
0.490	0.655	46.8	0.8563	0.0006
0.560	0.750	50.0	0.8555	0.0002
0.660	0.880	54.3	0.8574	0.0017
		Average :	0.8557	0.0009

Pitot ID:	5A-2			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.225	0.300	31.7	0.8574	0.0003
0.300	0.400	36.6	0.8574	0.0003
0.480	0.640	46.3	0.8574	0.0003
0.670	0.890	54.7	0.8590	0.0013
0.705	0.940	56.1	0.8574	0.0003
		Average :	0.8577	0.0005

Pitot ID:	ST 5A			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.210	0.290	30.6	0.8425	0.0003
0.375	0.520	40.9	0.8407	0.0020
0.480	0.660	46.3	0.8443	0.0015
0.545	0.750	49.3	0.8439	0.0012
0.630	0.870	53.0	0.8425	0.0003
		Average :	0.8428	0.0011

Pitot ID:	ST 5B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.210	0.290	30.6	0.8425	0.0017
0.360	0.500	40.1	0.8400	0.0007
0.490	0.670	46.8	0.8466	0.0059
0.610	0.860	52.2	0.8338	0.0070
0.700	0.970	55.9	0.8410	0.0002
		Average :	0.8408	0.0031

* Average absolute deviation must not exceed 0.01.

Calibrated by: Christian De La O

Signature:

Pitot ID:	5A-3			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.240	0.320	32.7	0.8574	0.0010
0.330	0.440	38.4	0.8574	0.0010
0.430	0.575	43.8	0.8561	0.0002
0.550	0.740	49.5	0.8535	0.0028
0.690	0.920	55.5	0.8574	0.0010
		Average :	0.8563	0.0012

Pitot ID:	5A-4			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.235	0.320	32.4	0.8484	0.0042
0.345	0.470	39.2	0.8482	0.0040
0.440	0.605	44.3	0.8443	0.0001
0.520	0.710	48.2	0.8472	0.0030
0.630	0.890	53.0	0.8329	0.0113
		Average :	0.8442	0.0045

Pitot	ID:	5A-5			
Refe	rence	S-Type	Air	Pitot	Deviation
Pi	tot	Pitot	Velocity	Coeff.	(absolute)
(in ⊦	12O)	(in H2O)	(ft/s)	Ср	
0.2	210	0.280	30.6	0.8574	0.0043
0.3	350	0.470	39.5	0.8543	0.0012
0.4	55	0.620	45.1	0.8481	0.0050
0.5	640	0.730	49.1	0.8515	0.0016
0.7	00	0.940	55.9	0.8543	0.0012
			Average :	0.8531	0.0027

Pitot ID:				
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		Average :		

Date:

	A. LANFRANCO and ASSOCIATES INC.									
		ENVI	RONMENT	AL CONSULTAN	ITS					
	NOZZLE DIAMETER CALIBRATION FORM Calibrated by: Christian De La O									
	Date: 01-Jul-24									
				Signature:	Zein	the second				
Nozzle I.D.	d1 (inch)	d2 (inch)	d3 (inch)	difference (inch)	average dia. (inch)	average area (ft ²)				
ST01	0.1250	0.1260	0.1260	0.0010	0.1257	0.0000861				
ST05	0.1705	0.1702	0.1710	0.0008	0.1706	0.0001587				
SS-1	0.1700	0.1709	0.1710	0.0010	0.1706	0.0001588				
SS-7 ST11	0.1710	0.1710	0.1715	0.0005	0.1712	0.0001598				
SS-8	0.2065	0.2050	0.2060	0.0015 0.0014	0.2058	0.0002311 0.0002353				
ST10	0.2077	0.2070	0.2084	0.0014	0.2113	0.0002333				
SS-18	0.2300	0.2316	0.2312	0.0016	0.2309	0.0002909				
ST15	0.2400	0.2395	0.2385	0.0015	0.2393	0.0003124				
SS-2	0.2401	0.2387	0.2381	0.0020	0.2390	0.0003115				
SS-3	0.2438	0.2437	0.2439	0.0002	0.2438	0.0003242				
SS-24	0.2412	0.2445	0.2416	0.0033	0.2424	0.0003206				
B	0.2400	0.2410	0.2415	0.0015	0.2408	0.0003163				
SS-14 ST30	0.2441	0.2475	0.2447	0.0034	0.2454	0.0003285				
ST20	0.2460	0.2455	0.2435	0.0025	0.2450	0.0003274 0.0003409				
A	0.2509	0.2495	0.2518	0.0010	0.2518	0.0003459				
SS-9	0.2680	0.2020	0.2703	0.0030	0.2698	0.0003969				
ST40	0.2860	0.2846	0.2855	0.0014	0.2854	0.0004442				
SS-30	0.2923	0.2962	0.2945	0.0039	0.2943	0.0004725				
<mark>SS-13</mark>	0.3060	0.3070	0.3065	0.0010	0.3065	0.0005124				
ST60	0.3000	0.3015	0.3005	0.0015	0.3007	0.0004931				
ST50	0.3015	0.3040	0.3055	0.0040	0.3037	0.0005029				
SS-10 SS-327	0.3176	0.3205	0.3213	0.0037	0.3198	0.0005578				
ST65	0.3250	0.3264 0.3345	0.3256	0.0014 0.0025	0.3257 0.3340	0.0005785 0.0006084				
ST66	0.3250	0.3264	0.3256	0.0014	0.3257	0.0005785				
ST80	0.3650	0.3655	0.3661	0.0011	0.3655	0.0007288				
ST75	0.3675	0.3650	0.3675	0.0025	0.3667	0.0007333				
SS-5	0.3666	0.3690	0.3677	0.0024	0.3678	0.0007377				
SS-16	0.3709	0.3731	0.3706	0.0025	0.3715	0.0007529				
ST76	0.3740	0.3740	0.3745	0.0005	0.3742	0.0007636				
ST85 SS-15	0.3955	0.3990	0.3970	0.0035	0.3972	0.0008603				
DD	0.4002	0.4024 0.4047	0.4033	0.0031 0.0012	0.4020	0.0008813 0.0008912				
SS11	0.4035	0.4047	0.4045	0.0012	0.4042	0.0008912				
ST70	0.4100	0.4239	0.4230	0.0020	0.4226	0.0009742				
ST86	0.4538	0.4566	0.4535	0.0031	0.4546	0.0011273				
С	0.4955	0.4935	0.4945	0.0020	0.4945	0.0013337				
SS-491	0.4885	0.4915	0.4889	0.0030	0.4896	0.0013076				
SS-49	0.4955	0.4960	0.4956	0.0005	0.4957	0.0013402				
SS-6	0.4949	0.4955	0.4942	0.0013	0.4949	0.0013357				
SS-492 ST90	0.4910	0.4901 0.4975	0.4940	0.0039 0.0025	0.4917 0.4962	0.0013186 0.0013427				
ST90 ST92	0.4950	0.4975	0.4960	0.0025	0.4962	0.0013427				
SS-558	0.5575	0.5538	0.5572	0.0023	0.5562	0.0016871				
ST96	0.5493	0.5531	0.5519	0.0038	0.5514	0.0016585				
SS-635	0.6306	0.6335	0.6345	0.0039	0.6329	0.0021845				
SS-12	0.7435	0.7415	0.7414	0.0021	0.7421	0.0030039				
	Where: (a)	D1, D2, D3		rent nozzle diam to within (0.025r	eters; each diamet nm) 0.001 in.	er must be				
	(b)	Difference =		difference betwee or equal to (0.1mi	en any two diamete m) 0.004 in.	ers; must be				
	(c)	Average = a	average of D	1, D2 and D3						

A. LANFRANCO and ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS

TEMPERATURE CALIBRATION FORM

Calibrated by: Date: Louis Agassiz 12-Jul-24

Signature:

nei an

TEMPERATURE DEVICE CALIBRATIONS

Reference Device		Temperature Settings (degrees F)														
Model CL23A Calibr	rator		3	2	100		200		300		500		800		1700	
Device	ALA #	Serial #	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation	Reading	Variation
Omega HH11A	3	300132	32	0.00%	99	-0.18%	201	0.15%	301	0.13%	500	0.00%	800	0.00%	1699	-0.05%
Omega HH11A	4	200167	32	0.00%	99	-0.18%	200	0.00%	303	0.39%	499	-0.10%	799	-0.08%	1697	-0.14%
Omega HH11A	6	600059	33	0.20%	100	0.00%	201	0.15%	300	0.00%	499.2	-0.08%	798	-0.16%	1696	-0.19%
TPI 341K	7	2.0315E+10	31	-0.20%	99.6	-0.07%	199	-0.15%	301	0.13%	499.1	-0.09%	799.1	-0.07%	1695	-0.23%
TPI 341K	8	2.0313E+10	32	0.00%	99.7	-0.05%	200.4	0.06%	301	0.13%	498.5	-0.16%	799.2	-0.06%	1696	-0.19%
Cont Cmpny	10	102008464	31	-0.20%	99.2	-0.14%	199.5	-0.08%	299	-0.13%	499	-0.10%	799.1	-0.07%	1699	-0.05%
Omega HH11	14	409426	32.5	0.10%	99.1	-0.16%	199	-0.15%	298	-0.26%	501	0.10%	799.1	-0.07%	1698	-0.09%
TPI 341K	16	400120029	31	-0.20%	100	0.00%	199.2	-0.12%	299.3	-0.09%	501	0.10%	799.1	-0.07%	1700	0.00%
TPI 341K	18	2.0329E+10	31	-0.20%	99.8	-0.04%	199.2	-0.12%	299.8	-0.03%	500	0.00%	799.5	-0.04%	1701	0.05%
TPI 341K	20	2.0329E+10	31	-0.20%	99.2	-0.14%	199.1	-0.14%	299	-0.13%	499.2	-0.08%	799.2	-0.06%	1699	-0.05%
TPI 341K 22 2.0329E+10			32	0.00%	99.6	-0.07%	199.2	-0.12%	298.4	-0.21%	499.1	-0.09%	798.5	-0.12%	1698	-0.09%
Reference device is a	ermocouple	calibrator														
Variation expressed	as a perce	entage of the a	bsolute tem	perature mu	st be within	1.5 %									,	

BAROMETER CALIBRATION FORM												
		Pbar E	inv Canada	Device (in	ches of Hg)	Difference						
					Elevation							
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr						
LA	15-Jul-24	99.8	29.46	29.37	29.44	0.02						
DS	15-Jul-24	99.8	29.46	29.36	29.43	0.03						
CL	15-Jul-24	99.8	29.46	29.37	29.44	0.02						
JC	15-Jul-24	99.8	29.46	29.34	29.41	0.05						
LF	15-Jul-24	99.8	29.46	29.36	29.43	0.03						
SH	15-Jul-24	99.8	29.46	29.35	29.42	0.04						
CDO	15-Jul-24	99.8	29.46	29.34	29.41	0.05						
JG	15-Jul-24	99.8	29.46	29.32	29.39	0.07						
ML	15-Jul-24	99.8	29.46	29.34	29.41	0.05						
BL	15-Jul-24	99.8	29.46	29.36	29.43	0.03						

Calibrated by: Louis

Louis Agassiz

15-Jul-24

Date:

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

https://weather.gc.ca/city/pages/bc-74_metric_e.html

Canadian Association for Laboratory Accreditation Inc.

Certificate of Accreditation

A. Lanfranco and Associates Inc. 101 - 9488 - 189th Street Surrey, British Columbia

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

 Accreditation No.:
 1004232

 Issued On:
 4/11/2023

 Accreditation Date:
 2/5/2021

 Expiry Date:
 10/11/2025

McKinle

President and CEO

This certificate is the property of the Canadian Association for Laboratory Accreditation Inc. and must be returned on request; reproduction must follow policy in place at date of issue. For the specific tests to which this accreditation applies, please refer to the laboratory's scope of accreditation at www.cala.ca.

MOUNT ROYAL UNIVERSITY

Faculty of Continuing Education and Extension

Jeremy Shawn Gibbs

has successfully completed

Stack Sampling

35 Hours / 2019

May 22, 2019

Dean Faculty of Continuing Education and Extension

Date

Ministry of Environment and Climate Change Strategy

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

elic Sciences

1.	Name of Qualified Professional CYCIMY CHORES	
	Title Environmental technician	
2.	Are you a registered member of a professional association in B.C.?	
	Name of Association:Registration #	
3.	Brief description of professional services:	
	Environmental Consultant Specialize in gir and	

× 1

This declaration of competency is collected under section 26(c) of the Freedom of Information and Protection of Privacy Act for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Declaration

I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.

Signature:	Witnessed by:
Print Name: Scremy 6.45	Print Name: Connoc Laan
Date signed: Nov 1, 2020	

 1 Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Ministry of Environment and Climate Change Strategy

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

____, as a member of <u>Air and Waste Management Association</u>

Select one of the following:

Absence from conflict of interest

Other than the standard fee I will receive for my professional services, I have no financial or other interest in the outcome of this **project** . I further declare that should a conflict of interest arise in the future during the course of this work, I will fully disclose the circumstances in writing and without delay to Mr. Sajid Barlas or the side of courtier

_____, erring on the side of caution.

Ministry of Environment and Climate Change Strategy

Real or perceived conflict of interest
 Description and nature of conflict(s):

I will maintain my objectivity, conducting my work in accordance with my Code of Ethics and standards of practice.

In addition, I will take the following steps to mitigate the real or perceived conflict(s) I have disclosed, to ensure the public interest remains paramount:

Further, I acknowledge that this disclosure may be interpreted as a threat to my independence and will be considered by the statutory decision maker accordingly.

This conflict of interest disclosure statement is collected under section 26(c) of the *Freedom of Information and Protection of Privacy Act* for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature ΎΧ Print name

Date: Dec. 16, 2020

Witnessed by: Mark Lanfranco Print name:

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

MOUNT ROYAL UNIVERSITY Faculty of Continuing Education

Liam Forrer

has successfully completed

Stack Sampling

The Faculty of Continuing Education Mount Royal University

30 hours | May 26, 2023

Dimitra Fotopoulos, Vice Dean Professional and Continuing Education

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional	Liam Forrer								
	Title	Environmental Technician								
2.	Are you a registered member of a professional association in B.C.?									
	Name of Association:	lame of Association:Registration #								
3.	Brief description of professional se Environmental consulting, spe	rvices: cializing in air and atmospheric sciences								

This declaration of competency is collected under section 26(c) of the *Freedom of Information and Protection of Privacy Act* for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Declaration

I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.

Signature:

x Liam Forrer

Print Name: Liam Forrer

Date signed: July 12, 2023

Witnessed by:

<u>x Daryl Sampson</u> Print Name: Daryl Sampson

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

Liam Forrer_____, as a member of <u>Air and Waste Management Association</u>

Select one of the following:

 \square Absence from conflict of interest

Other than the standard fee I will receive for my professional services, I have no financial or other interest in the outcome of this **project** . I further declare that should a conflict of interest arise in the future during the course of this work, I will fully disclose the circumstances in writing and without delay to <u>Mr. Sajid Barlas</u>, erring on the side of caution.

 \Box Real or perceived conflict of interest

Description and nature of conflict(s):

I will maintain my objectivity, conducting my work in accordance with my Code of Ethics and standards of practice.

In addition, I will take the following steps to mitigate the real or perceived conflict(s) I have disclosed, to ensure the public interest remains paramount:

Further, I acknowledge that this disclosure may be interpreted as a threat to my independence and will be considered by the statutory decision maker accordingly.

This conflict of interest disclosure statement is collected under section 26(c) of the *Freedom of Information and Protection of Privacy Act* for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature:

Liam Forrer

Print name: Liam Forrer

Date: July 12, 2023

Witnessed by:

Mark Lanfranco Print name:

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

CERTIFICATE OF ANALYSIS Grade: EPA Protocol

Work Order Number:	1869644	Cylinder Number:	T0M85AE
Part Number:	A1359010	Cylinder Size:	30AL
Laboratory:	SPG Calgary - AB	Cylinder Volume:	4.1 M3
Certification Date:	04/15/2024	Cylinder Pressure:	2000 PSI
Expiration Date:	04/15/2032	Valve Outlet Connection:	CGA 660

Certification performed in reference to EPA document 600/R-12/531 (EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards and G1 protocol (AA for NOX is included in the NO G1 protocol method) – May 2012), using the assay procedures listed and NIST/NTRM traceable standards. Do not use this cylinder below 100 psi.

ANALYTICAL RESULTS

Component	Nominal Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON MONOXIDE	500 PPM	504.4 PPM	G1	+/- 0.09 %	04/15/2024
SULFUR DIOXIDE	90 PPM	88.22 PPM	G1	+/- 0.26 %	04/15/2024
NITRIC OXIDE	90 PPM	91.11 PPM	G1	+/- 0.20 %	04/15/2024
NOX	90 PPM	91.24 PPM	G1	+/- 0.20 %	04/15/2024
NITROGEN	BALANCE				

TRACEABILITY

Туре	Lot ID	Cylinder #	Composition	Uncertainty	Expiration Date
GMIS GMIS GMIS GMIS	82-124614181-1 160-402793213-1 82-124614181-1 54-402589876-1	CC338627 CC407330 CC338627 CC522261	894.5 PPM CO in N2 303.1 PPM SO2 in N2 88.01 PPM NO in N2 3.209 PPM NO2 in N2	+/- 1.0 %	04/25/2025 08/01/2031 04/25/2025 11/29/2025

ANALYTICAL EQUIPMENT

Instrume MKS 2031 MKS 2031 MKS 2031	FT-IR FT-IR	Analytical Principle Fourier transform infrared spectroscopy Fourier transform infrared spectroscopy Fourier transform infrared spectroscopy	Last Multipoint Calibration CO: 04/08/2024 SO2: 03/26/2024 NO: 04/05/2024
CERTIFIED BY:	STEVEN SHI Lab Tech.	EH Ta	
REVISED BY: AYMEN OUE Lab Supervise		12	
			Version V3 (4/19/2017)

Praxair 5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax:(714) 542-6689 PGVPID: F22018

CGA 350

140 cu. ft.

DocNumber: 000119242

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information:

A LANFRANCO & ASSOC INC 101 9488 189TH ST SURREY BC V4N 4

Praxair Order Number: 54230389 Customer P. O. Number: Customer Reference Number:

Fill Date:	1/9/2018				
Part Number:	NI ME90ME-AS				
Lot Number:	700868009	06			
ylinder Style & Outlet:	AS	CC			
er Pressure & Volume:	2000 psig	14			

C

	Certified Concentration:	Cylinder Pressure & Volume.
Expiration Date: Cylinder Number:	1/18/2026 CC341054	NIST Traceable Analytical Uncertainty:
87.5 ppm Balance	METHANE NITROGEN	±1%

Certifcation Information: Certification Date: 1/18/2018 Term: 96 Months Expiration Date: 1/18/2026 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG.

Analytical Data:

1.

(R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

Соп	ponent:	METH	IAN	E						Refere	ence :	Standard	Type:		GMIS			
	Request				9	0 ppm						linder # :	- /		CC21	1670		
	Certified			ion:		7.5 ppm				Ref. S					100.7	ppm		
	Instrume							351135122		Ref. S	td. Tr	aceable t			2751			
	Analytical Method: Flame Ionization Deter Last Multipoint Calibration: 12/19/2017				tector	clor		SRM Sample # :					9-AL					
	Last Multipoint Calibration:			1:	2/19/20	17			SRM Cylinder # :					SX-20000				
	First A	nalysis	Dat	a:			Date:	1/18/2018		Seco	nd A	nalysis D	ata:			Date:		
	Z:	0	R:	100.3	C:	87.1	Conc:	87.506		Z:	D	R:	0	C:	0	Conc:	0	
			Ζ:	0	C:	87.2	Conc:	87.606		R:	0	Z:	0	C:	0	Conc:	ő	
	Z:	0	C:	87.1	R:	100.2	Conc:	87.506		Z:	0	C:	0	R:	0	Conc:	0	
	UOM:	ppm			Mea	an Test	Assay:	87.539 ppm	1	UOM	: p	pm		Mea	n Test	Assay:	Öppm	
		Ar	naly	/zed b	•	se Văr	squez					С	ertifie	ed by:	: Ć			Sump
						$\left(\right)$	+											

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is affered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information con tained herein exceed the fee established for providing such information.

Airgas Specialty Gases Airgas USA LLC 6141 Easton Road Plumsteadville, PA 18949 Airgas.com

CERTIFICATE OF BATCH ANALYSIS

Grade of Product: CEM-CAL ZERO

AIR LIQUIDE CANADA
NI CZ15A
EB0091075
124 - Plumsteadville - PA
Mar 22, 2024
160-402991125-1

Reference Number:160-402991125-1Cylinder Volume:142.0 CFCylinder Pressure:2000 PSIGValve Outlet:580

ANALYTICAL RESULTS

Component	Requested		Certified	
	Purity		Concentration	
NITROGEN	99.9995 %		99.9995 %	
NOx	0.1 PPM	<ldl< td=""><td>0.02 PPM</td><td></td></ldl<>	0.02 PPM	
SO2	0.1 PPM	<ldl< td=""><td>0.02 PPM</td><td></td></ldl<>	0.02 PPM	
THC	0.1 PPM	<	0.06 PPM	
CARBON MONOXIDE	0.5 PPM	<	0.02 PPM	
CARBON DIOXIDE	1.0 PPM	<	0.01 PPM	

Cylinders in Batch:

CC102603, CC17052, CC221353, CC36477, CC419393, CC42131, CC431395, CC477678, CC486056, EB0091075, SG9138060BAL, SG9153901, SG9169071BAL, XC004245B, XC031341B

Notes. Gloss Weight: 27.4 Kg Net Weight: 4.5 Kg P/N A0485344 PO# 89523379

Impurities verified against analytical standards traceable to NIST by weight and/or analysis.

Approved for Release

Edmonton Spec Gas Plant/Usine 12143 68th Street Edmonton AB T5B 1P9 Canada

MEPA METHANE 45PPM N2 BAL 152SZ/ MEPA MÉTHANE 45PPM N2 BAL 152SZ EPA PROTOCOL

Component	Nominal	Certified
<u>Composant</u>	<u>Nominale</u>	Certifiée
Methane / MÉTHANE	45 PPM	45.05 PPM
Nitrogen / AZOTE	BAL	

Cylinder Details/ Détails - bouteille:

Cylinder Size/ Taille de la bouteille: 152 Contents/ Capacité: 4.000 M3 Valve Outlet/ Robinet de sortie: 350 Nominal Pressure/Pression nominale: 2,000 PSG

Analytical Details/ Détails d'analyse:

Certification Accuracy $\pm 1\%$ Certification de précision $\pm 1\%$

Messer Canada Inc. plant management quality system is ISO 9001 registered. The product furnished under the referenced lot number is certified to contain the component concentration listed above. All values are mole/mole basis gas phase unless otherwise indicated. The reported uncertainty is at the 95% confidence level assuming a normal distribution. Messer Canada Inc. warrants that the above product conforms at time of shipment to the above description. The customers exclusive remedy should any of the products furnished under this certificate of analysis not conform to the manufacturers description shall be to receive replacement of the product or refund of the purchase price.

Le système de gestion de la qualité des usines de Messer Canada Inc. a été enregistré avec la Norme internationale ISO 9001. Il est certifié que tout produit fourni, avec un numéro de lot spécifié, contient la concentration d'éléments ci-dessus mentionnés. Toutes les valeurs sont exprimés en mole/ phase gazeuse, sauf indication contraire. Les incertitudes indiquées dans les descriptions sont des incertitudes élargies correspondant à un niveau de confiance d'environ 95 p. 100. Elles sont fondées sur une distribution normale. Messer Canada Inc.'garantit qu'au moment de l'expédition, le produit est conforme à la description ci-dessus. Si l'un des produits fournis en vertu de ce certificat d'analyse n'est pas conforme à la description du fabricant, le recours exclusif du client sera d'exiger le remboursement ou le remplacement du produit.

To reorder, please quote/ Pour renouveler une commande, veuillez indiquer le code: V24107503 Certificate Date (mm/dd/yy) / Date du certificat (mm/jj/aa) :02/07/2024 Use by / Utilisé par: 02/06/2032

Digitally signed and approved by/ signé électroniquement et approuvé par Analyst/Analyste: Jed Verville

Lot No./ No. lot 1817371

Cylinder No./ No. bouteille CC137247 Code V24107503 Page 1/1

Component

Carbon Monoxide

Nitric Oxide

Sulfur Dioxide

Oxides of Nitrogen -

MESSER CANADA INC

530 Watson St. East

Whitby, ON, Canada L1N 5R9

CERTIFICATE OF ANALYSIS

Part Number # 24108974

Cylinder Number: AS759544

ANALYTICAL RESULTS

Lot # 1719097

Grade of Product: EPA PROTOCOL STANDARD **Certification date PGVP ID #L12023** July 17, 2023 Procedure: G1 .3. Gas Type Code: SNC **Expiration Date** Cylinder pressure: 2000 psig July 18, 2031 **Requested Concentration Certified Concentration** Date of Assay Mean Concentration Uncertainty expressed at 95% confidence ± blending tolerance 242.6 ppm July 17, 2023 242.6 ± 1.21 ppm ARD 245 ppm ± 5% 98.91 ppm July 10, 2023 · 98.87 ± 0.32 ppm 95 ppm ± 5% july 17, 2023 98.83 ppm July 10, 2023 93.32 ppm 93.47 ± 0.43 ppm 95 ppm ± 5% 93.62 ppm july 17, 2023

98.91 ppm

98.83 ppm

BALANCE GAS: Nitrogen

95 ppm ± 5%

£	to de catorere	RE	FERENCE STANDA	RDS	
Component	Туре	Serial Number	Reference Number	Concentration	Expiration Date
Carbon Monoxide	GMIS	CC 421188	::392043	244.2 ± 0.5 ppm	• June 27, 2028
	ntrm	ff 22244	2-X-65 (1680b)	494.8 ± 10 ppm	September 20, 2021
Nitric Oxide	GMIS	CC311875	1491662	95.71 ± 0.46 ppm	March 12, 2029
	srm	FF20685	43-M-06	251.5 ± 0.8 ppm	October 29, 2023
Sulfur Dioxide	GMIS	CC173648	1450509	102 ± 0.32 ppm	September 5, 2025
	NTRM	ff 22293	94-1-20	494.6 ± 1.9 ppm	August 30, 2021
Oxides of Nitrogen		cc311875-NOX	43-M-06	95.71 ± 0.46 ppm 251.5 ± 0.8 ppm	March 12, 2029

July 10, 2023

July 17, 20**23**

CERTIFICATION INSTRUMENTS

2.

98.87 ± 0.32 ppm_

Component	Make/Model	Measurement Principle	Serial Number	Last calibration
Carbon Monoxide	FTIR CX 4015	Infrared	122434	July 4, 2023
Nitric Oxide	FTIR CX 4015	Infrared	122434	June 23, 2023
Sulfur Dioxide	FTIR CX 4015	Infrared	122434	June 23, 2023
Oxides of Nitrogen -	FTIR CX 4015	Infrared	122434	June 23, 2023

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE 2012 EPA PROTOCOL PROCEDURE OF THE CONTRACEABLE OF THE DESSURE FALLS BELOW 100 PSIG

Analyst:	Joey Zhao	Signature	Tolle	Date:	July 17, 2023
- Notes:					v 3
			Tel: 1-(866) 385-5:49 Fax:1-(866) 385-5347		Page 1 of 1

530 Watson St. East

Whitby, ON, Canada L1N 5R9

Grade of Product: EPA PROTOCOL STANDARD

CERTIFICATE OF ANALYSIS

MESSER

NA AL MARK.	Part Number # 24095743 Lot # 1719096 Cylinder Number: CC106742		Lot # 1719096 Procedure: G1		Certification date July 5, 2023 Expiration Date July 6, 2031
ANTEN I	ANALYTICA	L RESULTS Requested Concentration			Certified Concentration
	Component	± blending tolerance	Date of Assay	Mean Concentration	Uncertainty expressed at 95% confidence
÷ •	Oxygen	11 % ± 5%	July 5, 2023	11.00%	11,00 ± 0.05 % MARIA
	Carbon Dioxide	11 % ± 5%	July 5, 2023	10.94%	10.94 ± 0.09 %

	and the second second	and the state of the	Charles and the second second second second second		
Component	Туре	Serial Number	Reference Number	Concentration	Expiration Date
Oxygen	GMIS	- 551109	1501278	24 ± 0.05 %	June 25, 2029
	SRM	FF61023	71-F-XX	20.753 ± 0.02 %	February 27, 2026
Carbon Dioxide	GMIS	CC173721	1438051	19.96 ± 0.02 %	May 31, 2026
	NTRM	SG9916842	101001	19.98 ± 0.14 %	June 16, 2022
					W h
					A second se
					÷.

CERTIFICATION INSTRUMENTS

€.,

won

astence

Component	Make/Model	Measurement Principle	Serial Number	Last calibration
Oxygen	FTIR CX 4015	Infrared	122434	June 20, 2023
Carbon Dioxide	FTIR CX 4015	Infrared	122434	June 23, 2023
				8 :
1 113 31/		ATE IT MASSIER DESENACIONNIA		OCOL PROCEDURE
		BLE. IT WAS CERTIFIED ACCORDING USE THIS CYLINDER WHEN THE PRESSURE FA	a construction of the second sec	OCOL PROCEDURE
Analyst:Joey Zł	DO NOT	and the second	a construction of the second sec	OCOL PROCEDURE
	DO NOT	and the second	ALLS BELOW 100 PSIG	